硫黄
兴奋剂
过渡金属
催化作用
材料科学
析氧
氢
氧气
无机化学
金属
氧还原反应
纳米技术
化学
物理化学
电化学
冶金
电极
有机化学
光电子学
作者
Yuanhang Ma,Difei Leng,Xuming Zhang,Jijiang Fu,Chaoran Pi,Yang Zheng,Biao Gao,Xiangguo Li,Neng Li,Paul K. Chu,Yongsong Luo,Kaifu Huo
出处
期刊:Small
[Wiley]
日期:2022-08-26
卷期号:18 (39)
被引量:76
标识
DOI:10.1002/smll.202203173
摘要
2D transition metal disulfides (TMDs) are promising and cost-effective alternatives to noble-metal-based catalysts for hydrogen production. Activation of the inert basal plane of TMDs is crucial to improving the catalytic efficiency. Herein, introduction of in-plane sulfur vacancies (Sv ) and 3d transition metal dopants in concert activates the basal planes of MoS2 (M-Sv -MoS2 ) to achieve high activities in the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Acetate introducing mild wet chemical etching removes surface S atoms facilitating subsequent cation exchange between the exposed Mo atoms and targeted metal ions in solution. Density-functional theory calculation demonstrates that the exposed 3d transition metal dopants in MoS2 basal planes serve as multifunctional active centers, which not only reduce ΔGH* but also accelerate water oxidation. As a result, the optimal Ni-Sv -MoS2 and Co-Sv -MoS2 electrocatalysts show excellent stability and alkaline HER and OER characteristics such as low overpotentials of 101 and 190 mV at 10 mA cm-2 , respectively. The results reveal a strategy to activate the inert MoS2 basal planes by defect and doping co-engineering and the technique can be extended to other types of TMDs for high-efficiency electrocatalysis beyond water splitting.
科研通智能强力驱动
Strongly Powered by AbleSci AI