A hybrid sensor for motor tics recognition based on piezoelectric and triboelectric design and fabrication

纳米发生器 摩擦电效应 材料科学 能量收集 压电 电压 纳米技术 光电子学 电气工程 工程类 功率(物理) 复合材料 物理 量子力学
作者
Jie Wang,Chih Chia Chen,Chin Yau Shie,Tomi T. Li,Yiin‐Kuen Fuh
出处
期刊:Sensors and Actuators A-physical [Elsevier BV]
卷期号:342: 113622-113622 被引量:18
标识
DOI:10.1016/j.sna.2022.113622
摘要

With the gradual development of various artificial electronic skins and smart patches and other wearable electronic products, the collection of biomechanical energy to achieve self-powered sensing is critical to achieving the efficient function and sustainability of the system. In this work, a study of a novel hybrid sensor fabricated based on the piezoelectric and triboelectric design for motor tics recognition will be presented. A plant bionic and flexible hybrid self-powered sensor (PBHS) for motor tics recognition is reported. By combining bionic polydimethylsiloxane (PDMS) triboelectric nanogenerator and a layered stacked porous polyvinylidene fluoride-trifluoroethylene (PVDF-TrFE) nanofiber piezoelectric nanogenerator in mixing through near-field electrospinning (NFES) process on the flexible printed circuit board (FPCB) substrate, this enables the sensor which is a layer-by-layer stacked porous PVDF-TrFE nanofiber (LPPN) mainly composed of about 2500 piezoelectric polymers as a height of 2.2 mm thin wall to enhance energy harvesting characteristics. Compared with the original PVDF-TrFE nanogenerator, the voltage output performance is nearly reached to 5 V as a ~200% improvement. Furthermore, a self-powered tics recognition system has been developed through deep learning to provide doctors to observe the status of patients with motor tics of Tourette syndrome. By using the deep learning model of long short-term memory (LSTM) of a type of recurrent neural network (RNN), the overall sequences hybrid signal recognition rate for tic recognition has been achieved to 88.1%. • The new sensor enables to enhance energy harvesting characteristics. • A self-powered personal tic state recognition system for patient identification is explored for big data analysis. • Combining the deep learning LSTM model, the recognition rate of personal sequence tic signals reached 88.1%. • Opening up new ways for self-powered wearable electronic systems and bring huge opportunities for medical big data analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
daixan89完成签到 ,获得积分10
1秒前
chxh211完成签到,获得积分10
2秒前
qqqq_8完成签到,获得积分10
2秒前
好好完成签到,获得积分10
3秒前
小九完成签到,获得积分10
4秒前
JohnsonTse完成签到,获得积分10
5秒前
饿哭了塞完成签到 ,获得积分10
6秒前
xiuxue424完成签到,获得积分10
7秒前
含蓄的静竹完成签到 ,获得积分10
7秒前
小鸭嘎嘎完成签到 ,获得积分10
8秒前
东晓完成签到,获得积分10
8秒前
哇哈哈哈哈哈完成签到,获得积分10
10秒前
mafei完成签到 ,获得积分10
10秒前
无一完成签到 ,获得积分0
12秒前
mix完成签到,获得积分10
13秒前
孙_boss完成签到 ,获得积分10
14秒前
尚影芷完成签到,获得积分10
14秒前
14秒前
虚拟的纸鹤完成签到 ,获得积分10
16秒前
怡然新梅完成签到,获得积分10
16秒前
gy发布了新的文献求助10
16秒前
organic tirrttf完成签到,获得积分10
17秒前
潇洒发布了新的文献求助10
17秒前
小奥雄完成签到,获得积分10
18秒前
胡可完成签到 ,获得积分10
19秒前
小杭76完成签到,获得积分0
20秒前
niumi190完成签到,获得积分0
20秒前
Lester完成签到 ,获得积分10
21秒前
夏虫完成签到,获得积分10
23秒前
23秒前
无语的安卉完成签到 ,获得积分10
24秒前
Chere20200628完成签到 ,获得积分10
25秒前
优雅的化蛹完成签到,获得积分10
26秒前
wanci应助LMY采纳,获得10
26秒前
ergatoid完成签到,获得积分10
27秒前
gy关闭了gy文献求助
29秒前
Vista2023toFD完成签到,获得积分10
29秒前
肉山完成签到,获得积分10
30秒前
奋斗的飞柏完成签到 ,获得积分10
30秒前
CallMeIris完成签到,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5256332
求助须知:如何正确求助?哪些是违规求助? 4418639
关于积分的说明 13752945
捐赠科研通 4291811
什么是DOI,文献DOI怎么找? 2355152
邀请新用户注册赠送积分活动 1351564
关于科研通互助平台的介绍 1312264