A hybrid sensor for motor tics recognition based on piezoelectric and triboelectric design and fabrication

纳米发生器 摩擦电效应 材料科学 能量收集 压电 电压 纳米技术 光电子学 电气工程 工程类 功率(物理) 复合材料 物理 量子力学
作者
Jie Wang,Chih Chia Chen,Chin Yau Shie,Tomi T. Li,Yiin‐Kuen Fuh
出处
期刊:Sensors and Actuators A-physical [Elsevier]
卷期号:342: 113622-113622 被引量:18
标识
DOI:10.1016/j.sna.2022.113622
摘要

With the gradual development of various artificial electronic skins and smart patches and other wearable electronic products, the collection of biomechanical energy to achieve self-powered sensing is critical to achieving the efficient function and sustainability of the system. In this work, a study of a novel hybrid sensor fabricated based on the piezoelectric and triboelectric design for motor tics recognition will be presented. A plant bionic and flexible hybrid self-powered sensor (PBHS) for motor tics recognition is reported. By combining bionic polydimethylsiloxane (PDMS) triboelectric nanogenerator and a layered stacked porous polyvinylidene fluoride-trifluoroethylene (PVDF-TrFE) nanofiber piezoelectric nanogenerator in mixing through near-field electrospinning (NFES) process on the flexible printed circuit board (FPCB) substrate, this enables the sensor which is a layer-by-layer stacked porous PVDF-TrFE nanofiber (LPPN) mainly composed of about 2500 piezoelectric polymers as a height of 2.2 mm thin wall to enhance energy harvesting characteristics. Compared with the original PVDF-TrFE nanogenerator, the voltage output performance is nearly reached to 5 V as a ~200% improvement. Furthermore, a self-powered tics recognition system has been developed through deep learning to provide doctors to observe the status of patients with motor tics of Tourette syndrome. By using the deep learning model of long short-term memory (LSTM) of a type of recurrent neural network (RNN), the overall sequences hybrid signal recognition rate for tic recognition has been achieved to 88.1%. • The new sensor enables to enhance energy harvesting characteristics. • A self-powered personal tic state recognition system for patient identification is explored for big data analysis. • Combining the deep learning LSTM model, the recognition rate of personal sequence tic signals reached 88.1%. • Opening up new ways for self-powered wearable electronic systems and bring huge opportunities for medical big data analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助ZHANES采纳,获得10
刚刚
刚刚
feihua1发布了新的文献求助30
刚刚
1秒前
ltyyy2025发布了新的文献求助30
1秒前
爆米花应助安详绿草采纳,获得10
1秒前
Daisy完成签到 ,获得积分10
1秒前
1秒前
于清绝完成签到 ,获得积分10
1秒前
星辰大海应助花啊拾肆采纳,获得10
1秒前
桓某人发布了新的文献求助10
1秒前
ll123完成签到,获得积分10
2秒前
2秒前
淡然寒蕾发布了新的文献求助10
2秒前
2秒前
3秒前
holland完成签到 ,获得积分10
3秒前
3秒前
李爱国应助李月采纳,获得10
3秒前
科研通AI6应助哈哈采纳,获得30
3秒前
Idumori发布了新的文献求助10
3秒前
自律的王一博完成签到,获得积分10
4秒前
害羞的乌完成签到,获得积分10
5秒前
5秒前
123发布了新的文献求助10
6秒前
Hello应助HHHHH采纳,获得10
6秒前
tonyfountain发布了新的文献求助10
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
8秒前
0305发布了新的文献求助20
8秒前
良晤完成签到,获得积分10
8秒前
9秒前
9秒前
柳柒完成签到,获得积分10
10秒前
SpONGeBOb完成签到 ,获得积分10
10秒前
Akim应助kin采纳,获得10
10秒前
兔子完成签到,获得积分10
10秒前
上官若男应助niuya采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5429349
求助须知:如何正确求助?哪些是违规求助? 4542754
关于积分的说明 14183071
捐赠科研通 4460809
什么是DOI,文献DOI怎么找? 2445853
邀请新用户注册赠送积分活动 1437028
关于科研通互助平台的介绍 1414182