A hybrid sensor for motor tics recognition based on piezoelectric and triboelectric design and fabrication

纳米发生器 摩擦电效应 材料科学 能量收集 压电 电压 纳米技术 光电子学 电气工程 工程类 功率(物理) 复合材料 物理 量子力学
作者
Jie Wang,Chih Chia Chen,Chin Yau Shie,Tomi T. Li,Yiin‐Kuen Fuh
出处
期刊:Sensors and Actuators A-physical [Elsevier BV]
卷期号:342: 113622-113622 被引量:18
标识
DOI:10.1016/j.sna.2022.113622
摘要

With the gradual development of various artificial electronic skins and smart patches and other wearable electronic products, the collection of biomechanical energy to achieve self-powered sensing is critical to achieving the efficient function and sustainability of the system. In this work, a study of a novel hybrid sensor fabricated based on the piezoelectric and triboelectric design for motor tics recognition will be presented. A plant bionic and flexible hybrid self-powered sensor (PBHS) for motor tics recognition is reported. By combining bionic polydimethylsiloxane (PDMS) triboelectric nanogenerator and a layered stacked porous polyvinylidene fluoride-trifluoroethylene (PVDF-TrFE) nanofiber piezoelectric nanogenerator in mixing through near-field electrospinning (NFES) process on the flexible printed circuit board (FPCB) substrate, this enables the sensor which is a layer-by-layer stacked porous PVDF-TrFE nanofiber (LPPN) mainly composed of about 2500 piezoelectric polymers as a height of 2.2 mm thin wall to enhance energy harvesting characteristics. Compared with the original PVDF-TrFE nanogenerator, the voltage output performance is nearly reached to 5 V as a ~200% improvement. Furthermore, a self-powered tics recognition system has been developed through deep learning to provide doctors to observe the status of patients with motor tics of Tourette syndrome. By using the deep learning model of long short-term memory (LSTM) of a type of recurrent neural network (RNN), the overall sequences hybrid signal recognition rate for tic recognition has been achieved to 88.1%. • The new sensor enables to enhance energy harvesting characteristics. • A self-powered personal tic state recognition system for patient identification is explored for big data analysis. • Combining the deep learning LSTM model, the recognition rate of personal sequence tic signals reached 88.1%. • Opening up new ways for self-powered wearable electronic systems and bring huge opportunities for medical big data analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
莲肥发布了新的文献求助10
1秒前
三新荞完成签到,获得积分10
1秒前
可可卡比兽完成签到 ,获得积分10
1秒前
April完成签到,获得积分10
1秒前
傲娇的鹰完成签到,获得积分10
1秒前
Hart完成签到 ,获得积分10
2秒前
2秒前
CodeCraft应助nunu采纳,获得10
2秒前
heyan完成签到,获得积分10
2秒前
noair发布了新的文献求助10
2秒前
3秒前
再一完成签到 ,获得积分10
3秒前
CjwCjw发布了新的文献求助10
3秒前
slx0410完成签到,获得积分10
3秒前
华仔应助顾化蛹采纳,获得10
3秒前
i_jueloa完成签到 ,获得积分10
3秒前
小曹完成签到,获得积分10
3秒前
lipppfff完成签到,获得积分10
4秒前
paul完成签到,获得积分10
4秒前
BCS发布了新的文献求助10
4秒前
4秒前
4秒前
复杂黑夜发布了新的文献求助10
5秒前
老白完成签到,获得积分10
5秒前
6秒前
6秒前
allen完成签到,获得积分10
6秒前
包子牛奶完成签到,获得积分10
6秒前
Jasper应助默默采纳,获得10
6秒前
羞涩的文轩完成签到,获得积分10
6秒前
闪闪的丸子完成签到,获得积分10
6秒前
小包子完成签到,获得积分10
7秒前
一颗菠菜完成签到,获得积分10
7秒前
Tyrion_L完成签到,获得积分10
7秒前
完美冷安完成签到,获得积分10
7秒前
搞怪的白云完成签到 ,获得积分10
7秒前
ghtsmile完成签到 ,获得积分10
7秒前
tang完成签到,获得积分0
8秒前
烟花应助青塘龙仔采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5093986
求助须知:如何正确求助?哪些是违规求助? 4307375
关于积分的说明 13419555
捐赠科研通 4133722
什么是DOI,文献DOI怎么找? 2264715
邀请新用户注册赠送积分活动 1268237
关于科研通互助平台的介绍 1204202