A hybrid sensor for motor tics recognition based on piezoelectric and triboelectric design and fabrication

纳米发生器 摩擦电效应 材料科学 能量收集 压电 电压 纳米技术 光电子学 电气工程 工程类 功率(物理) 复合材料 量子力学 物理
作者
Jie Wang,Chih Chia Chen,Chin Yau Shie,Tomi T. Li,Yiin‐Kuen Fuh
出处
期刊:Sensors and Actuators A-physical [Elsevier BV]
卷期号:342: 113622-113622 被引量:18
标识
DOI:10.1016/j.sna.2022.113622
摘要

With the gradual development of various artificial electronic skins and smart patches and other wearable electronic products, the collection of biomechanical energy to achieve self-powered sensing is critical to achieving the efficient function and sustainability of the system. In this work, a study of a novel hybrid sensor fabricated based on the piezoelectric and triboelectric design for motor tics recognition will be presented. A plant bionic and flexible hybrid self-powered sensor (PBHS) for motor tics recognition is reported. By combining bionic polydimethylsiloxane (PDMS) triboelectric nanogenerator and a layered stacked porous polyvinylidene fluoride-trifluoroethylene (PVDF-TrFE) nanofiber piezoelectric nanogenerator in mixing through near-field electrospinning (NFES) process on the flexible printed circuit board (FPCB) substrate, this enables the sensor which is a layer-by-layer stacked porous PVDF-TrFE nanofiber (LPPN) mainly composed of about 2500 piezoelectric polymers as a height of 2.2 mm thin wall to enhance energy harvesting characteristics. Compared with the original PVDF-TrFE nanogenerator, the voltage output performance is nearly reached to 5 V as a ~200% improvement. Furthermore, a self-powered tics recognition system has been developed through deep learning to provide doctors to observe the status of patients with motor tics of Tourette syndrome. By using the deep learning model of long short-term memory (LSTM) of a type of recurrent neural network (RNN), the overall sequences hybrid signal recognition rate for tic recognition has been achieved to 88.1%. • The new sensor enables to enhance energy harvesting characteristics. • A self-powered personal tic state recognition system for patient identification is explored for big data analysis. • Combining the deep learning LSTM model, the recognition rate of personal sequence tic signals reached 88.1%. • Opening up new ways for self-powered wearable electronic systems and bring huge opportunities for medical big data analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
稳重中心发布了新的文献求助10
刚刚
威武的成风完成签到,获得积分10
刚刚
1秒前
平常芷波发布了新的文献求助10
1秒前
诸星大发布了新的文献求助10
1秒前
小白不是小狗完成签到,获得积分10
1秒前
1秒前
科研通AI6应助啊萍采纳,获得10
2秒前
all完成签到,获得积分10
2秒前
2秒前
Knight发布了新的文献求助10
2秒前
Kanas完成签到,获得积分10
2秒前
heheha完成签到,获得积分10
3秒前
滴滴滴滴完成签到,获得积分10
3秒前
zby完成签到,获得积分20
3秒前
sasa完成签到 ,获得积分10
3秒前
鹿仙完成签到,获得积分10
3秒前
3秒前
凉城予梦发布了新的文献求助10
4秒前
spoon1026完成签到,获得积分10
4秒前
DXF发布了新的文献求助10
5秒前
温婉的花生完成签到 ,获得积分10
5秒前
5秒前
zby发布了新的文献求助10
5秒前
华仔应助陆东采纳,获得10
5秒前
6秒前
qiukeyingying发布了新的文献求助10
6秒前
6秒前
Kanas发布了新的文献求助10
7秒前
猫小咪发布了新的文献求助10
7秒前
可爱的函函应助SHINING采纳,获得10
8秒前
zhaimen完成签到 ,获得积分10
8秒前
骑猪看月完成签到,获得积分10
8秒前
lixy发布了新的文献求助10
8秒前
找呀找完成签到,获得积分10
8秒前
Sharon完成签到,获得积分10
9秒前
BiuBiu怪完成签到,获得积分10
9秒前
OVERLXRD完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
蔚111完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4614925
求助须知:如何正确求助?哪些是违规求助? 4018912
关于积分的说明 12440362
捐赠科研通 3701783
什么是DOI,文献DOI怎么找? 2041353
邀请新用户注册赠送积分活动 1074080
科研通“疑难数据库(出版商)”最低求助积分说明 957723