A hybrid sensor for motor tics recognition based on piezoelectric and triboelectric design and fabrication

纳米发生器 摩擦电效应 材料科学 能量收集 压电 纳米技术 计算机科学 能量(信号处理) 复合材料 统计 数学
作者
Jie Jin Wang,Chih Chen,Chin Yau Shie,Tomi T. Li,Yiin Kuen Fuh
出处
期刊:Sensors and Actuators A-physical [Elsevier BV]
卷期号:342: 113622-113622 被引量:1
标识
DOI:10.1016/j.sna.2022.113622
摘要

With the gradual development of various artificial electronic skins and smart patches and other wearable electronic products, the collection of biomechanical energy to achieve self-powered sensing is critical to achieving the efficient function and sustainability of the system. In this work, a study of a novel hybrid sensor fabricated based on the piezoelectric and triboelectric design for motor tics recognition will be presented. A plant bionic and flexible hybrid self-powered sensor (PBHS) for motor tics recognition is reported. By combining bionic polydimethylsiloxane (PDMS) triboelectric nanogenerator and a layered stacked porous polyvinylidene fluoride-trifluoroethylene (PVDF-TrFE) nanofiber piezoelectric nanogenerator in mixing through near-field electrospinning (NFES) process on the flexible printed circuit board (FPCB) substrate, this enables the sensor which is a layer-by-layer stacked porous PVDF-TrFE nanofiber (LPPN) mainly composed of about 2500 piezoelectric polymers as a height of 2.2 mm thin wall to enhance energy harvesting characteristics. Compared with the original PVDF-TrFE nanogenerator, the voltage output performance is nearly reached to 5 V as a ~200% improvement. Furthermore, a self-powered tics recognition system has been developed through deep learning to provide doctors to observe the status of patients with motor tics of Tourette syndrome. By using the deep learning model of long short-term memory (LSTM) of a type of recurrent neural network (RNN), the overall sequences hybrid signal recognition rate for tic recognition has been achieved to 88.1%. • The new sensor enables to enhance energy harvesting characteristics. • A self-powered personal tic state recognition system for patient identification is explored for big data analysis. • Combining the deep learning LSTM model, the recognition rate of personal sequence tic signals reached 88.1%. • Opening up new ways for self-powered wearable electronic systems and bring huge opportunities for medical big data analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Helical完成签到,获得积分10
刚刚
1秒前
超级的煎饼完成签到,获得积分10
2秒前
2秒前
留胡子的之云完成签到,获得积分20
2秒前
3秒前
3秒前
3秒前
牵墨发布了新的文献求助10
4秒前
4秒前
5秒前
金道基发布了新的文献求助30
5秒前
诸葛醉薇发布了新的文献求助30
5秒前
5秒前
6秒前
6秒前
6秒前
kmzzy完成签到,获得积分10
7秒前
字斟句酌完成签到,获得积分10
7秒前
7秒前
111完成签到,获得积分10
7秒前
摸鱼完成签到,获得积分10
8秒前
Santasy发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
科研通AI2S应助马喽采纳,获得10
10秒前
小二郎应助zy采纳,获得10
10秒前
江铭完成签到,获得积分10
11秒前
Hanaa发布了新的文献求助10
11秒前
ohyeah8888应助zhangqhhh采纳,获得50
12秒前
AAA建材批发原哥完成签到,获得积分10
12秒前
爆米花应助三六九采纳,获得10
12秒前
QXK发布了新的文献求助10
12秒前
Youngsy完成签到 ,获得积分10
12秒前
12秒前
Akim应助为神武采纳,获得10
13秒前
喜悦蚂蚁完成签到,获得积分10
13秒前
13秒前
CodeCraft应助ark861023采纳,获得10
13秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3747832
求助须知:如何正确求助?哪些是违规求助? 3290686
关于积分的说明 10070441
捐赠科研通 3006585
什么是DOI,文献DOI怎么找? 1651216
邀请新用户注册赠送积分活动 786271
科研通“疑难数据库(出版商)”最低求助积分说明 751591