A hybrid sensor for motor tics recognition based on piezoelectric and triboelectric design and fabrication

纳米发生器 摩擦电效应 材料科学 能量收集 压电 纳米技术 计算机科学 能量(信号处理) 复合材料 统计 数学
作者
Jie Jin Wang,Chih Chen,Chin Yau Shie,Tomi T. Li,Yiin Kuen Fuh
出处
期刊:Sensors and Actuators A-physical [Elsevier BV]
卷期号:342: 113622-113622 被引量:1
标识
DOI:10.1016/j.sna.2022.113622
摘要

With the gradual development of various artificial electronic skins and smart patches and other wearable electronic products, the collection of biomechanical energy to achieve self-powered sensing is critical to achieving the efficient function and sustainability of the system. In this work, a study of a novel hybrid sensor fabricated based on the piezoelectric and triboelectric design for motor tics recognition will be presented. A plant bionic and flexible hybrid self-powered sensor (PBHS) for motor tics recognition is reported. By combining bionic polydimethylsiloxane (PDMS) triboelectric nanogenerator and a layered stacked porous polyvinylidene fluoride-trifluoroethylene (PVDF-TrFE) nanofiber piezoelectric nanogenerator in mixing through near-field electrospinning (NFES) process on the flexible printed circuit board (FPCB) substrate, this enables the sensor which is a layer-by-layer stacked porous PVDF-TrFE nanofiber (LPPN) mainly composed of about 2500 piezoelectric polymers as a height of 2.2 mm thin wall to enhance energy harvesting characteristics. Compared with the original PVDF-TrFE nanogenerator, the voltage output performance is nearly reached to 5 V as a ~200% improvement. Furthermore, a self-powered tics recognition system has been developed through deep learning to provide doctors to observe the status of patients with motor tics of Tourette syndrome. By using the deep learning model of long short-term memory (LSTM) of a type of recurrent neural network (RNN), the overall sequences hybrid signal recognition rate for tic recognition has been achieved to 88.1%. • The new sensor enables to enhance energy harvesting characteristics. • A self-powered personal tic state recognition system for patient identification is explored for big data analysis. • Combining the deep learning LSTM model, the recognition rate of personal sequence tic signals reached 88.1%. • Opening up new ways for self-powered wearable electronic systems and bring huge opportunities for medical big data analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
abcc1234发布了新的文献求助10
1秒前
通天塔发布了新的文献求助10
1秒前
Akim应助活泼的牛排采纳,获得10
1秒前
2秒前
2秒前
打老虎完成签到,获得积分10
2秒前
音悦台完成签到,获得积分10
2秒前
plant完成签到,获得积分10
4秒前
鲜艳的熊猫完成签到,获得积分10
4秒前
幸福的乾发布了新的文献求助10
4秒前
文艺新儿发布了新的文献求助10
4秒前
5秒前
5秒前
1111完成签到,获得积分10
5秒前
5秒前
好学的猪完成签到,获得积分10
6秒前
277发布了新的文献求助10
7秒前
xuzj应助163采纳,获得10
8秒前
qin完成签到 ,获得积分10
8秒前
可耐的问凝完成签到,获得积分10
8秒前
书晗发布了新的文献求助20
9秒前
lin发布了新的文献求助10
9秒前
跳跃鱼完成签到,获得积分10
9秒前
磨人的老妖精完成签到,获得积分10
10秒前
10秒前
GeniusC完成签到,获得积分10
10秒前
11秒前
11秒前
FashionBoy应助咖可乐采纳,获得10
12秒前
CR7应助淳于越泽采纳,获得20
12秒前
victory_liu发布了新的文献求助10
12秒前
亦清完成签到,获得积分10
12秒前
付艳完成签到,获得积分10
13秒前
梦醒完成签到,获得积分10
13秒前
NexusExplorer应助123采纳,获得10
14秒前
喜悦山柳完成签到,获得积分10
14秒前
专一的傲白完成签到 ,获得积分10
14秒前
14秒前
15秒前
咖啡味椰果完成签到 ,获得积分10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986586
求助须知:如何正确求助?哪些是违规求助? 3529069
关于积分的说明 11242999
捐赠科研通 3267514
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881175
科研通“疑难数据库(出版商)”最低求助积分说明 808582