A hybrid sensor for motor tics recognition based on piezoelectric and triboelectric design and fabrication

纳米发生器 摩擦电效应 材料科学 能量收集 压电 纳米技术 计算机科学 能量(信号处理) 复合材料 统计 数学
作者
Jie Jin Wang,Chih Chen,Chin Yau Shie,Tomi T. Li,Yiin Kuen Fuh
出处
期刊:Sensors and Actuators A-physical [Elsevier]
卷期号:342: 113622-113622 被引量:1
标识
DOI:10.1016/j.sna.2022.113622
摘要

With the gradual development of various artificial electronic skins and smart patches and other wearable electronic products, the collection of biomechanical energy to achieve self-powered sensing is critical to achieving the efficient function and sustainability of the system. In this work, a study of a novel hybrid sensor fabricated based on the piezoelectric and triboelectric design for motor tics recognition will be presented. A plant bionic and flexible hybrid self-powered sensor (PBHS) for motor tics recognition is reported. By combining bionic polydimethylsiloxane (PDMS) triboelectric nanogenerator and a layered stacked porous polyvinylidene fluoride-trifluoroethylene (PVDF-TrFE) nanofiber piezoelectric nanogenerator in mixing through near-field electrospinning (NFES) process on the flexible printed circuit board (FPCB) substrate, this enables the sensor which is a layer-by-layer stacked porous PVDF-TrFE nanofiber (LPPN) mainly composed of about 2500 piezoelectric polymers as a height of 2.2 mm thin wall to enhance energy harvesting characteristics. Compared with the original PVDF-TrFE nanogenerator, the voltage output performance is nearly reached to 5 V as a ~200% improvement. Furthermore, a self-powered tics recognition system has been developed through deep learning to provide doctors to observe the status of patients with motor tics of Tourette syndrome. By using the deep learning model of long short-term memory (LSTM) of a type of recurrent neural network (RNN), the overall sequences hybrid signal recognition rate for tic recognition has been achieved to 88.1%. • The new sensor enables to enhance energy harvesting characteristics. • A self-powered personal tic state recognition system for patient identification is explored for big data analysis. • Combining the deep learning LSTM model, the recognition rate of personal sequence tic signals reached 88.1%. • Opening up new ways for self-powered wearable electronic systems and bring huge opportunities for medical big data analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
eagle14835完成签到,获得积分10
刚刚
周周完成签到,获得积分10
刚刚
等风的人完成签到,获得积分10
刚刚
1秒前
iNk应助hyjhhy采纳,获得10
1秒前
乔宇完成签到,获得积分10
2秒前
Sean完成签到,获得积分10
3秒前
海鹰发布了新的文献求助10
3秒前
lzw123456关注了科研通微信公众号
3秒前
王大禹发布了新的文献求助10
3秒前
Megumi发布了新的文献求助10
4秒前
anny.white完成签到,获得积分10
4秒前
Herbert发布了新的文献求助10
4秒前
PPP完成签到,获得积分10
4秒前
周周发布了新的文献求助10
4秒前
Shaun完成签到,获得积分20
5秒前
5秒前
海棠花未眠完成签到,获得积分10
5秒前
罗四夕完成签到,获得积分10
7秒前
超级小卢发布了新的文献求助10
7秒前
7秒前
7秒前
CipherSage应助lobster采纳,获得10
8秒前
淡然善斓完成签到,获得积分10
8秒前
Jasper应助快乐寄风采纳,获得10
8秒前
科研通AI2S应助Sean采纳,获得10
8秒前
MRM完成签到 ,获得积分10
9秒前
威威完成签到,获得积分10
10秒前
10秒前
11秒前
大侦探皮卡丘完成签到,获得积分10
11秒前
11秒前
杨123完成签到 ,获得积分10
12秒前
12秒前
拧宁完成签到,获得积分10
12秒前
12秒前
DQ8733发布了新的文献求助10
12秒前
简单灵凡发布了新的文献求助10
12秒前
聪明帅哥完成签到,获得积分20
12秒前
lolo完成签到,获得积分10
12秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134243
求助须知:如何正确求助?哪些是违规求助? 2785100
关于积分的说明 7770199
捐赠科研通 2440666
什么是DOI,文献DOI怎么找? 1297493
科研通“疑难数据库(出版商)”最低求助积分说明 624971
版权声明 600792