亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improving the prediction of DNA-protein binding by integrating multi-scale dense convolutional network with fault-tolerant coding

计算机科学 深度学习 卷积神经网络 标杆管理 人工智能 编码(社会科学) 人工神经网络 数据挖掘 模式识别(心理学) 算法 数学 统计 业务 营销
作者
Yu-Hang Yin,Long-Chen Shen,Yuanhao Jiang,Shang Gao,Jiangning Song,Dong-Jun Yu
出处
期刊:Analytical Biochemistry [Elsevier]
卷期号:656: 114878-114878
标识
DOI:10.1016/j.ab.2022.114878
摘要

Accurate prediction of DNA-protein binding (DPB) is of great biological significance for studying the regulatory mechanism of gene expression. In recent years, with the rapid development of deep learning techniques, advanced deep neural networks have been introduced into the field and shown to significantly improve the prediction performance of DPB. However, these methods are primarily based on the DNA sequences measured by the ChIP-seq technology, failing to consider the possible partial variations of the motif sequences and errors of the sequencing technology itself. To address this, we propose a novel computational method, termed MSDenseNet, which combines a new fault-tolerant coding (FTC) scheme with the dense connectional deep neural networks. Three important factors can be attributed to the success of MSDenseNet: First, MSDenseNet utilizes a powerful feature representation approach, which transforms the raw DNA sequence into fusion coding using the fault-tolerant feature sequence; Second, in terms of network structure, MSDenseNet uses a multi-scale convolution within the dense layer and the multi-scale convolution preceding the dense block. This is shown to be able to significantly improve the network performance and accelerate the network convergence speed, and third, building upon the advanced deep neural network, MSDenseNet is capable of effectively mining the hidden complex relationship between the internal attributes of fusion sequence features to enhance the prediction of DPB. Benchmarking experiments on 690 ChIP-seq datasets show that MSDenseNet achieves an average AUC of 0.933 and outperforms the state-of-the-art method. The source code of MSDenseNet is available at https://github.com/csbio-njust-edu/msdensenet. The results show that MSDenseNet can effectively predict DPB. We anticipate that MSDenseNet will be exploited as a powerful tool to facilitate a more exhaustive understanding of DNA-binding proteins and help toward their functional characterization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
18秒前
姜浩嘉发布了新的文献求助10
21秒前
22秒前
ldysaber完成签到,获得积分0
23秒前
23秒前
lk发布了新的文献求助10
25秒前
欢喜沛蓝发布了新的文献求助10
26秒前
29秒前
ksen发布了新的文献求助10
34秒前
Loooong应助lk采纳,获得10
36秒前
英俊的铭应助含糊的怜阳采纳,获得10
48秒前
Ava应助ksen采纳,获得10
50秒前
lk完成签到,获得积分10
56秒前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
深情安青应助科研通管家采纳,获得10
1分钟前
Kylin完成签到,获得积分10
1分钟前
科研通AI5应助嬴胡亥采纳,获得10
2分钟前
完美世界应助己凡采纳,获得10
2分钟前
bian完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
己凡发布了新的文献求助10
2分钟前
2分钟前
美好的万天完成签到,获得积分10
2分钟前
2分钟前
2分钟前
DTiverson完成签到,获得积分10
2分钟前
3分钟前
3分钟前
完美世界应助Murphy采纳,获得30
3分钟前
3分钟前
嬴胡亥发布了新的文献求助10
4分钟前
4分钟前
范围内清晨破解完成签到,获得积分20
4分钟前
4分钟前
4分钟前
Nature发布了新的文献求助20
4分钟前
老实的寒荷完成签到,获得积分20
4分钟前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3491339
求助须知:如何正确求助?哪些是违规求助? 3077921
关于积分的说明 9151234
捐赠科研通 2770492
什么是DOI,文献DOI怎么找? 1520508
邀请新用户注册赠送积分活动 704589
科研通“疑难数据库(出版商)”最低求助积分说明 702298