高光谱成像
计算机科学
探测器
缩小
人工智能
像素
能量(信号处理)
能量最小化
噪音(视频)
立方体(代数)
模式识别(心理学)
数据立方体
非线性系统
人工神经网络
算法
图像(数学)
数学
数据挖掘
统计
程序设计语言
电信
物理
组合数学
量子力学
化学
计算化学
作者
Xiaoli Yang,Min Zhao,Shuaikai Shi,Jie Chen
标识
DOI:10.1109/jstars.2022.3205211
摘要
Hyperspectral images contain abundant spectral information, which provides great potential for detecting targets that cannot be analyzed with color images. However, a variety of factors, including inherent spectral variability and noise, make it difficult for traditional detectors to separate the target and background by using linear decision boundaries. In this work, we propose a nonlinear detector formulation by generalizing the conventional constrained energy minimization (CEM) method and then design novel nonlinear detectors with two deep neural network structures (named deep CEM or DCEM). The pixel-based structure confirms the effectiveness of the proposed framework, and the cube-based structure utilizing spatial information further improves the performance of the algorithm. The experimental results show that the proposed DCEM method outperforms other competing hyperspectral target detection algorithms.
科研通智能强力驱动
Strongly Powered by AbleSci AI