A Scalable Graph-Based Framework for Multi-Organ Histology Image Classification

判别式 可扩展性 人工智能 计算机科学 图形 机器学习 模式识别(心理学) 理论计算机科学 数据库
作者
Yu Bai,Yue Mi,Yihan Su,Bo Zhang,Zheng Zhang,Jingyun Wu,Haiwen Huang,Yongping Xiong,Xiangyang Gong,Wendong Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (11): 5506-5517 被引量:8
标识
DOI:10.1109/jbhi.2022.3199110
摘要

Graph-based approaches are successful for histology image classification tasks but still face many challenges, such as: 1) the lack of nuclei-level labels and the significant variations between histology images make it extremely difficult to extract discriminative high-level nuclei features like nuclei type, texture and micro-environment; 2) graph-based approaches cannot handle large-scale cell graph nodes typically contained in histology images; and 3) graph neural networks (GNNs) struggle to learn the long-range dependency of cell graphs. To address the above challenges, we propose a scalable graph-based framework for multi-organ histology image classification. We develop a two-step masked nuclei patches supervised training approach to extract discriminative high-level nuclei features for histology images without nuclei-level labels. Additionally, we introduce a nuclei sampling strategy to make our graph-based framework scalable for large-scale cell graphs. Furthermore, we propose H ier A rchical T ransformer Graph Neural Net work (HAT-Net+) for cell graph classi- fications. HAT-Net+ adopts Transformer to model the long-range dependency of cell graphs and a parameter-free approach to adaptively fuse different hierarchical graph representations of each layer. We achieved the state-of-the-art results on four public histology image classification datasets: CRC dataset (100%), Extended CRC dataset (98%), UZH dataset (96.9%) and BACH dataset (88%). Unlike other methods, our approach can be used in various histology image classification tasks, even for images without nuclei-level labels, indicating its potential in cancer diagnosis. The code is available at https://github.com/suyouooooo/HAT-Net .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shi hui应助宇老师采纳,获得10
1秒前
陈思完成签到,获得积分10
1秒前
SciGPT应助cy采纳,获得10
3秒前
王钰绮完成签到 ,获得积分10
5秒前
无情颖完成签到 ,获得积分10
5秒前
宁静致远完成签到,获得积分10
7秒前
顾矜应助活泼红牛采纳,获得10
7秒前
桐桐应助科研通管家采纳,获得10
8秒前
风吹麦田应助科研通管家采纳,获得30
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得10
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
那时花开应助科研通管家采纳,获得10
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
wy.he应助科研通管家采纳,获得20
8秒前
SciGPT应助科研通管家采纳,获得10
9秒前
bkagyin应助科研通管家采纳,获得10
9秒前
标致的方盒完成签到,获得积分10
9秒前
蜘猪侠zx应助科研通管家采纳,获得10
9秒前
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
英姑应助科研通管家采纳,获得10
9秒前
我是老大应助科研通管家采纳,获得10
9秒前
那时花开应助科研通管家采纳,获得10
9秒前
大力契应助科研通管家采纳,获得10
9秒前
所所应助科研通管家采纳,获得10
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
上官若男应助科研通管家采纳,获得10
9秒前
9秒前
桐桐应助科研通管家采纳,获得30
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
ding应助科研通管家采纳,获得10
10秒前
酷波er应助科研通管家采纳,获得10
10秒前
10秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5378758
求助须知:如何正确求助?哪些是违规求助? 4503204
关于积分的说明 14015274
捐赠科研通 4411911
什么是DOI,文献DOI怎么找? 2423541
邀请新用户注册赠送积分活动 1416486
关于科研通互助平台的介绍 1393925