A Scalable Graph-Based Framework for Multi-Organ Histology Image Classification

判别式 可扩展性 人工智能 计算机科学 图形 机器学习 模式识别(心理学) 理论计算机科学 数据库
作者
Yu Bai,Yue Mi,Yihan Su,Bo Zhang,Zheng Zhang,Jingyun Wu,Haiwen Huang,Yongping Xiong,Xiangyang Gong,Wendong Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (11): 5506-5517 被引量:8
标识
DOI:10.1109/jbhi.2022.3199110
摘要

Graph-based approaches are successful for histology image classification tasks but still face many challenges, such as: 1) the lack of nuclei-level labels and the significant variations between histology images make it extremely difficult to extract discriminative high-level nuclei features like nuclei type, texture and micro-environment; 2) graph-based approaches cannot handle large-scale cell graph nodes typically contained in histology images; and 3) graph neural networks (GNNs) struggle to learn the long-range dependency of cell graphs. To address the above challenges, we propose a scalable graph-based framework for multi-organ histology image classification. We develop a two-step masked nuclei patches supervised training approach to extract discriminative high-level nuclei features for histology images without nuclei-level labels. Additionally, we introduce a nuclei sampling strategy to make our graph-based framework scalable for large-scale cell graphs. Furthermore, we propose H ier A rchical T ransformer Graph Neural Net work (HAT-Net+) for cell graph classi- fications. HAT-Net+ adopts Transformer to model the long-range dependency of cell graphs and a parameter-free approach to adaptively fuse different hierarchical graph representations of each layer. We achieved the state-of-the-art results on four public histology image classification datasets: CRC dataset (100%), Extended CRC dataset (98%), UZH dataset (96.9%) and BACH dataset (88%). Unlike other methods, our approach can be used in various histology image classification tasks, even for images without nuclei-level labels, indicating its potential in cancer diagnosis. The code is available at https://github.com/suyouooooo/HAT-Net .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老实幻姬发布了新的文献求助10
刚刚
Active完成签到,获得积分10
刚刚
不会447发布了新的文献求助10
刚刚
聪明藏今完成签到,获得积分10
1秒前
1秒前
Octopus发布了新的文献求助30
1秒前
神勇的煎蛋完成签到,获得积分10
2秒前
张朵朵完成签到 ,获得积分20
2秒前
迷你的隶完成签到,获得积分10
2秒前
羽言完成签到,获得积分10
2秒前
黄晃晃完成签到,获得积分10
3秒前
YY发布了新的文献求助10
3秒前
小二郎应助WN采纳,获得10
3秒前
Hello应助123567采纳,获得10
3秒前
复杂千亦完成签到,获得积分10
3秒前
charon完成签到,获得积分20
3秒前
阔达小天鹅应助yhgyjgfgft采纳,获得10
3秒前
可可西里完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
卜哥完成签到,获得积分10
4秒前
柳贯一完成签到,获得积分10
4秒前
黎簇完成签到 ,获得积分10
4秒前
chenbin1105完成签到,获得积分10
4秒前
今后应助老路采纳,获得10
4秒前
CC完成签到,获得积分10
5秒前
无辜的夏山完成签到,获得积分10
5秒前
6秒前
6秒前
Adamfreex完成签到 ,获得积分10
6秒前
今后应助caizhonglun采纳,获得10
6秒前
6秒前
蓝色斑马完成签到,获得积分10
6秒前
虚幻小凡完成签到,获得积分10
6秒前
科研通AI5应助charon采纳,获得30
7秒前
7秒前
弎夜完成签到,获得积分10
7秒前
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4902185
求助须知:如何正确求助?哪些是违规求助? 4181228
关于积分的说明 12980171
捐赠科研通 3946514
什么是DOI,文献DOI怎么找? 2164652
邀请新用户注册赠送积分活动 1182883
关于科研通互助平台的介绍 1089373