A Scalable Graph-Based Framework for Multi-Organ Histology Image Classification

判别式 可扩展性 人工智能 计算机科学 图形 机器学习 模式识别(心理学) 理论计算机科学 数据库
作者
Yu Bai,Yue Mi,Yihan Su,Bo Zhang,Zheng Zhang,Jingyun Wu,Haiwen Huang,Yongping Xiong,Xiangyang Gong,Wendong Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (11): 5506-5517 被引量:6
标识
DOI:10.1109/jbhi.2022.3199110
摘要

Graph-based approaches are successful for histology image classification tasks but still face many challenges, such as: 1) the lack of nuclei-level labels and the significant variations between histology images make it extremely difficult to extract discriminative high-level nuclei features like nuclei type, texture and micro-environment; 2) graph-based approaches cannot handle large-scale cell graph nodes typically contained in histology images; and 3) graph neural networks (GNNs) struggle to learn the long-range dependency of cell graphs. To address the above challenges, we propose a scalable graph-based framework for multi-organ histology image classification. We develop a two-step masked nuclei patches supervised training approach to extract discriminative high-level nuclei features for histology images without nuclei-level labels. Additionally, we introduce a nuclei sampling strategy to make our graph-based framework scalable for large-scale cell graphs. Furthermore, we propose H ier A rchical T ransformer Graph Neural Net work (HAT-Net+) for cell graph classi- fications. HAT-Net+ adopts Transformer to model the long-range dependency of cell graphs and a parameter-free approach to adaptively fuse different hierarchical graph representations of each layer. We achieved the state-of-the-art results on four public histology image classification datasets: CRC dataset (100%), Extended CRC dataset (98%), UZH dataset (96.9%) and BACH dataset (88%). Unlike other methods, our approach can be used in various histology image classification tasks, even for images without nuclei-level labels, indicating its potential in cancer diagnosis. The code is available at https://github.com/suyouooooo/HAT-Net .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Johnson发布了新的文献求助30
1秒前
hyx完成签到,获得积分10
1秒前
1秒前
orixero应助tyruyoiup采纳,获得10
2秒前
2秒前
无花果应助爱吃香菜采纳,获得10
2秒前
Owen应助Chloe采纳,获得10
2秒前
810完成签到,获得积分20
2秒前
3秒前
yang完成签到,获得积分10
3秒前
8R60d8应助wangsiyuan采纳,获得10
4秒前
冬虫夏草发布了新的文献求助10
4秒前
4秒前
sci-hub完成签到,获得积分10
4秒前
过时的柚子完成签到,获得积分10
5秒前
5秒前
北海发布了新的文献求助10
6秒前
6秒前
6秒前
田国兵发布了新的文献求助10
6秒前
7秒前
8秒前
Jasper应助Siwen采纳,获得10
9秒前
和谐代灵发布了新的文献求助10
9秒前
夜王完成签到,获得积分10
9秒前
芋圆完成签到,获得积分10
9秒前
sjc发布了新的文献求助10
10秒前
凡`发布了新的文献求助10
10秒前
11秒前
陆磊磊完成签到,获得积分10
12秒前
不吃鱼的猫完成签到,获得积分10
12秒前
小杜小杜关注了科研通微信公众号
12秒前
玫瑰枪杀案_完成签到,获得积分10
13秒前
13秒前
无聊的火龙果应助朝暮采纳,获得10
13秒前
13秒前
马丹娜完成签到,获得积分20
13秒前
14秒前
程程发布了新的文献求助10
14秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160420
求助须知:如何正确求助?哪些是违规求助? 2811548
关于积分的说明 7892779
捐赠科研通 2470529
什么是DOI,文献DOI怎么找? 1315616
科研通“疑难数据库(出版商)”最低求助积分说明 630884
版权声明 602042