A Scalable Graph-Based Framework for Multi-Organ Histology Image Classification

判别式 可扩展性 人工智能 计算机科学 图形 机器学习 模式识别(心理学) 理论计算机科学 数据库
作者
Yu Bai,Yue Mi,Yihan Su,Bo Zhang,Zheng Zhang,Jingyun Wu,Haiwen Huang,Yongping Xiong,Xiangyang Gong,Wendong Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (11): 5506-5517 被引量:8
标识
DOI:10.1109/jbhi.2022.3199110
摘要

Graph-based approaches are successful for histology image classification tasks but still face many challenges, such as: 1) the lack of nuclei-level labels and the significant variations between histology images make it extremely difficult to extract discriminative high-level nuclei features like nuclei type, texture and micro-environment; 2) graph-based approaches cannot handle large-scale cell graph nodes typically contained in histology images; and 3) graph neural networks (GNNs) struggle to learn the long-range dependency of cell graphs. To address the above challenges, we propose a scalable graph-based framework for multi-organ histology image classification. We develop a two-step masked nuclei patches supervised training approach to extract discriminative high-level nuclei features for histology images without nuclei-level labels. Additionally, we introduce a nuclei sampling strategy to make our graph-based framework scalable for large-scale cell graphs. Furthermore, we propose H ier A rchical T ransformer Graph Neural Net work (HAT-Net+) for cell graph classi- fications. HAT-Net+ adopts Transformer to model the long-range dependency of cell graphs and a parameter-free approach to adaptively fuse different hierarchical graph representations of each layer. We achieved the state-of-the-art results on four public histology image classification datasets: CRC dataset (100%), Extended CRC dataset (98%), UZH dataset (96.9%) and BACH dataset (88%). Unlike other methods, our approach can be used in various histology image classification tasks, even for images without nuclei-level labels, indicating its potential in cancer diagnosis. The code is available at https://github.com/suyouooooo/HAT-Net .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhouzhou发布了新的文献求助10
刚刚
DAYE发布了新的文献求助10
刚刚
刚刚
刚刚
牛牛牛完成签到,获得积分10
刚刚
BellaBB发布了新的文献求助10
刚刚
幽默与研完成签到,获得积分10
1秒前
木棉完成签到,获得积分10
1秒前
1秒前
NexusExplorer应助ljkshr采纳,获得10
1秒前
2秒前
3秒前
18275412695发布了新的文献求助10
3秒前
3秒前
贯云发布了新的文献求助10
3秒前
CC完成签到 ,获得积分10
3秒前
3秒前
英俊的铭应助晴文采纳,获得10
4秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
不争馒头争口气完成签到,获得积分10
4秒前
稳重绿旋发布了新的文献求助10
5秒前
辣子鱼完成签到,获得积分10
5秒前
yfy_fairy发布了新的文献求助10
5秒前
sxwzssyj完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
言诚开发布了新的文献求助10
7秒前
科研小白发布了新的文献求助10
7秒前
传奇3应助啊啊啊采纳,获得10
7秒前
372925abc完成签到,获得积分10
8秒前
ZM发布了新的文献求助10
9秒前
9秒前
9秒前
殷硕完成签到,获得积分10
10秒前
11秒前
一一应助不才采纳,获得10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545721
求助须知:如何正确求助?哪些是违规求助? 4631761
关于积分的说明 14622099
捐赠科研通 4573427
什么是DOI,文献DOI怎么找? 2507524
邀请新用户注册赠送积分活动 1484223
关于科研通互助平台的介绍 1455530