A new inverse DEA model with frontier changes for analyzing the achievement path of CO2 emissions target of China in 2030

边疆 路径(计算) 中国 反向 环境经济学 环境科学 经济 计量经济学 计算机科学 数学 地理 几何学 考古 程序设计语言
作者
Jin-Cheng Lu,Meijuan Li,Zijie Shen
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:375: 134014-134014 被引量:9
标识
DOI:10.1016/j.jclepro.2022.134014
摘要

China has promised to reduce its CO 2 emissions per gross domestic product (GDP) by 60–65% relative to 2005 emissions by 2030, which puts higher requirements for the quality of China's future economic development. Meanwhile, using current methods to scientifically analyze the realization path of CO 2 emission reduction while ensuring future economic development remains a challenge. This study develops a new inverse data envelopment analysis (DEA) method to analyze the annual realization path of CO 2 emission reduction and economic growth targets in China from 2020 to 2030. This method not only considers undesirable output and frontier changes but also analyzes the realization path of CO 2 emission reduction on the premise of ensuring economic growth. Moreover, the proposed method can analyze resource optimization allocation to achieve the corresponding goals, and its contributions to sustainable development are discussed. The results indicate that (1) In terms of CO 2 emission reduction, the eastern region will face the largest pressure of CO 2 emission reduction, accounting for 52.85% of the total CO 2 emission reduction, followed by the central region, accounting for 37.2%, and the western region will face the least pressure, accounting for 9.95%; whereas in terms of the change trend of CO 2 emission reduction, the eastern and central regions show opposite CO 2 emission reduction trends, while the trend in the western region is relatively stable. (2) At provincial level, CO 2 emission reduction shows a polarized distribution. Many provinces, such as Jiangsu, Guangdong, Hunan, and Chongqing, undertake great pressure to reduce CO 2 emission. However, some provinces, such as Shandong, Shanxi, and Yunnan, almost have no potential to reduce CO 2 emission while maintaining economic growth. (3) The increasement of human and energy resources input in the future is key to achieving CO 2 emission reduction and economic development goals. Finally, some useful implications are summarized by analyzing the results to provide powerful decision support for achieving CO 2 emission reduction and economic growth targets of China in 2030. • A new inverse DEA with undesirable output and frontier changes is developed. • Realization paths of CO 2 emission reduction and economic growth targets are analyzed. • Resource optimization plan for achieving the corresponding targets is discussed. • CO 2 emission reduction potential shows a spatial difference characteristic. • Targeted suggestions are summarized for the realization of China's CO 2 reduction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
典雅绮兰完成签到 ,获得积分10
刚刚
刚刚
三岁应助火星上的冬云采纳,获得10
刚刚
Rain发布了新的文献求助10
1秒前
1111应助科研通管家采纳,获得10
2秒前
3秒前
chall应助科研通管家采纳,获得20
3秒前
浮游应助科研通管家采纳,获得10
3秒前
Criminology34应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
jelifo应助科研通管家采纳,获得20
3秒前
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
1111应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
1111应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
胡树发布了新的文献求助30
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
3秒前
Cling应助科研通管家采纳,获得20
3秒前
Cling应助科研通管家采纳,获得20
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
jelifo应助科研通管家采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得30
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
4秒前
Millie完成签到,获得积分10
4秒前
4秒前
4秒前
SCI完成签到 ,获得积分10
4秒前
4秒前
唠叨的富发布了新的文献求助10
5秒前
Leon完成签到,获得积分10
6秒前
Alkaid驳回了Hello应助
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646071
求助须知:如何正确求助?哪些是违规求助? 4770105
关于积分的说明 15032959
捐赠科研通 4804652
什么是DOI,文献DOI怎么找? 2569176
邀请新用户注册赠送积分活动 1526218
关于科研通互助平台的介绍 1485748