A new inverse DEA model with frontier changes for analyzing the achievement path of CO2 emissions target of China in 2030

边疆 路径(计算) 中国 反向 环境经济学 环境科学 经济 计量经济学 计算机科学 数学 地理 几何学 考古 程序设计语言
作者
Jin-Cheng Lu,Meijuan Li,Zijie Shen
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:375: 134014-134014 被引量:9
标识
DOI:10.1016/j.jclepro.2022.134014
摘要

China has promised to reduce its CO 2 emissions per gross domestic product (GDP) by 60–65% relative to 2005 emissions by 2030, which puts higher requirements for the quality of China's future economic development. Meanwhile, using current methods to scientifically analyze the realization path of CO 2 emission reduction while ensuring future economic development remains a challenge. This study develops a new inverse data envelopment analysis (DEA) method to analyze the annual realization path of CO 2 emission reduction and economic growth targets in China from 2020 to 2030. This method not only considers undesirable output and frontier changes but also analyzes the realization path of CO 2 emission reduction on the premise of ensuring economic growth. Moreover, the proposed method can analyze resource optimization allocation to achieve the corresponding goals, and its contributions to sustainable development are discussed. The results indicate that (1) In terms of CO 2 emission reduction, the eastern region will face the largest pressure of CO 2 emission reduction, accounting for 52.85% of the total CO 2 emission reduction, followed by the central region, accounting for 37.2%, and the western region will face the least pressure, accounting for 9.95%; whereas in terms of the change trend of CO 2 emission reduction, the eastern and central regions show opposite CO 2 emission reduction trends, while the trend in the western region is relatively stable. (2) At provincial level, CO 2 emission reduction shows a polarized distribution. Many provinces, such as Jiangsu, Guangdong, Hunan, and Chongqing, undertake great pressure to reduce CO 2 emission. However, some provinces, such as Shandong, Shanxi, and Yunnan, almost have no potential to reduce CO 2 emission while maintaining economic growth. (3) The increasement of human and energy resources input in the future is key to achieving CO 2 emission reduction and economic development goals. Finally, some useful implications are summarized by analyzing the results to provide powerful decision support for achieving CO 2 emission reduction and economic growth targets of China in 2030. • A new inverse DEA with undesirable output and frontier changes is developed. • Realization paths of CO 2 emission reduction and economic growth targets are analyzed. • Resource optimization plan for achieving the corresponding targets is discussed. • CO 2 emission reduction potential shows a spatial difference characteristic. • Targeted suggestions are summarized for the realization of China's CO 2 reduction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
快乐再出发完成签到,获得积分10
刚刚
小邱发布了新的文献求助10
刚刚
Hey完成签到 ,获得积分10
1秒前
1秒前
2秒前
1114873157发布了新的文献求助10
2秒前
2秒前
huagelihai完成签到,获得积分10
2秒前
动听的觅波完成签到,获得积分10
3秒前
4秒前
啊超发布了新的文献求助10
5秒前
5秒前
一个稚气的小孩完成签到,获得积分10
5秒前
llw完成签到,获得积分10
5秒前
6秒前
6秒前
共享精神应助橙子采纳,获得10
6秒前
6秒前
hutian完成签到,获得积分10
7秒前
NexusExplorer应助傲娇的冷亦采纳,获得10
7秒前
7秒前
Lucas应助小邱采纳,获得10
7秒前
8秒前
8秒前
8秒前
8秒前
9秒前
赘婿应助haha采纳,获得10
10秒前
lexy完成签到 ,获得积分10
10秒前
乐园鸟发布了新的文献求助10
10秒前
爱笑鸡翅发布了新的文献求助10
10秒前
中国郎发布了新的文献求助10
11秒前
11秒前
12秒前
meiqiu完成签到 ,获得积分10
12秒前
勤劳怜寒完成签到,获得积分20
12秒前
满家归寻完成签到 ,获得积分10
12秒前
13秒前
小木得霖发布了新的文献求助10
13秒前
LHL发布了新的文献求助10
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151531
求助须知:如何正确求助?哪些是违规求助? 2802910
关于积分的说明 7851162
捐赠科研通 2460322
什么是DOI,文献DOI怎么找? 1309707
科研通“疑难数据库(出版商)”最低求助积分说明 628997
版权声明 601760