癌症研究
免疫
免疫系统
免疫学
免疫疗法
癌症免疫疗法
医学
作者
Alfonso R. Sánchez-Paulete,Jaime Mateus-Tique,Gürkan Mollaoglu,Sebastian R. Nielsen,Adam Marks,Ashwitha Lakshmi,Jalal A. Khan,C. Matthias Wilk,Luisanna Pia,Alessia Baccarini,Miriam Mérad,Brian D. Brown
出处
期刊:Cancer immunology research
[American Association for Cancer Research]
日期:2022-09-12
卷期号:10 (11): 1354-1369
被引量:20
标识
DOI:10.1158/2326-6066.cir-21-1075
摘要
Abstract Tumor-associated macrophages (TAM) are one of the most abundant cell types in many solid tumors and typically exert protumor effects. This has led to an interest in macrophage-depleting agents for cancer therapy, but approaches developed to date have had limited success in clinical trials. Here, we report the development of a strategy for TAM depletion in mouse solid tumor models using chimeric antigen receptor (CAR) T cells targeting the macrophage marker F4/80 (F4.CAR-T). F4.CAR-T cells effectively killed macrophages in vitro and in vivo without toxicity. When injected into mice bearing orthotopic lung tumors, F4.CAR-T cells infiltrated tumor lesions and delayed tumor growth comparably with PD-1 blockade, and significantly extended mouse survival. Antitumor effects were mediated by F4.CAR-T–produced IFNγ, which promoted upregulation of MHC molecules on cancer cells and tumor-infiltrating myeloid cells. Notably, F4.CAR-T promoted expansion of endogenous CD8 T cells specific for tumor-associated antigen and led to immune editing of highly antigenic tumor cell clones. Antitumor impact was also observed in mouse models of ovarian and pancreatic cancer. These studies provide proof of principle to support CAR T-cell targeting of TAMs as a means to enhance antitumor immunity.
科研通智能强力驱动
Strongly Powered by AbleSci AI