生物
自噬
ATG5型
中肠
家蚕
拉伤
下调和上调
细胞生物学
ATG12
幼虫
基因
细胞凋亡
生物化学
植物
解剖
作者
Huiduo Guo,Mingfa Ling,Runhuan Yang,Tao Gui,Gang Li,Guodong Zhao,Sheng Wang,Heying Qian
摘要
High temperature stress has long-term negative effects on the growth and development of silkworm (Bombyx mori). Different silkworm varieties show the different tolerance to high temperature. The induction of autophagy is linked to increased thermotolerance in diverse ectothermic organisms. However, the function of autophagy in the thermotolerant and thermosensitive silkworm strains under high-temperature conditions remains unclear. The thermotolerant Liangguang NO.2 and thermosensitive Jingsong × Haoyue strains were used to explore the role of autophagy in thermotolerance. Here, we first found that the larval body weight gain was increased in the thermosensitive Jingsong × Haoyue strain, but there was no difference in the thermotolerant Liangguang NO.2 strain under high temperature conditions. High temperature stress had a negative influence on the cocoon performance in both the Liangguang NO.2 and Jingsong × Haoyue strains. Additionally, the autophagy-related gene Atg5 mRNA expression in the Liangguang NO.2 strain was upregulated by high temperature, while the expression of Atg12 mRNA was reduced in the Jingsong × Haoyue strain. Titers of 20-Hydroxyecdysone and the ultraspiracle 1 mRNA expression in the Liangguang NO.2 strain were upregulated by high temperature, which might be associated with the induction of autophagy. These results demonstrate the potentially regulatory mechanism of autophagy in silkworms' tolerance to high temperature, providing a theoretical basis for exploring the physiological mechanism of thermotolerance in insects.
科研通智能强力驱动
Strongly Powered by AbleSci AI