HyGate-GCN: Hybrid-Gate-Based Graph Convolutional Networks with dynamical ratings estimation for personalised POI recommendation

计算机科学 图形 卷积神经网络 估计 机器学习 人工智能 推荐系统 理论计算机科学 管理 经济
作者
Simon Nandwa Anjiri,Derui Ding,Yan Song
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:258: 125217-125217
标识
DOI:10.1016/j.eswa.2024.125217
摘要

The presence of user-generated ratings has dramatically facilitated the development of recommendation systems to aid users in discovering relevant and personalized points of interest (POI). It is worth mentioning that users' choices and preferences are not static but rather dynamic, reflecting the ever-changing nature of human experiences and influences. Furthermore, the utilization of social influence and geographical proximity of users is still insufficient to capture the homophily effect within networks. In this paper, an interesting Hybrid Gate-based Graph Convolutional Network (HyGate-GCN) combining with feature vectors embedding and interaction, where a modified gated-GCN is proposed for personalized recommendations by adequately employing the behavior of users' check-ins, temporal properties of users' decisions, social properties of users, as well as the user/POI profile information data. Specifically, a novel POI graph reflecting the geographical proximity is first established to describe the behavior of users' check-ins and, at the same time, an improved overlap ratio about POIs is employed to effectively describe temporal properties of users' decisions. Then, an attention mechanism is developed to encode feature vectors of both the users and POIs, with the objective of assigning higher importance to features that are deemed relevant. Furthermore, a temporal Kalman filter dynamically estimating ratings is developed to exploit the information about the evolving preferences of users over time. Finally, a modified gated-GCN model with merging and refining gates is constructed to effectively acquire the homophily phenomenon in both trust network graphs and spatial adjacency matrix graphs of users and POIs respectively. Experimental results provide evidence of the effectiveness of our approach in improving accuracy and personalization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一二发布了新的文献求助10
2秒前
烟花应助自由香魔采纳,获得10
2秒前
JFy完成签到,获得积分10
2秒前
大个应助haoguo采纳,获得10
4秒前
JamesPei应助阿呆在发呆采纳,获得10
5秒前
6秒前
7秒前
penguin完成签到,获得积分10
8秒前
轻语完成签到,获得积分10
9秒前
Anyemzl完成签到,获得积分10
9秒前
10秒前
Hrx完成签到,获得积分10
12秒前
matteo完成签到,获得积分10
12秒前
邵竺发布了新的文献求助10
14秒前
14秒前
眉弯完成签到,获得积分10
14秒前
15秒前
16秒前
在水一方应助一二采纳,获得10
17秒前
眉弯发布了新的文献求助10
19秒前
玉米关注了科研通微信公众号
19秒前
19秒前
活泼的狗完成签到,获得积分10
20秒前
ddd完成签到 ,获得积分10
20秒前
orixero应助JFy采纳,获得10
20秒前
21秒前
21秒前
23秒前
儒雅的焦发布了新的文献求助10
24秒前
bkagyin应助cl0928采纳,获得10
24秒前
Vegccc发布了新的文献求助10
24秒前
25秒前
27秒前
传奇3应助邵竺采纳,获得10
29秒前
科研通AI2S应助HIBARRA采纳,获得10
31秒前
InfoNinja应助科研通管家采纳,获得30
31秒前
大模型应助科研通管家采纳,获得10
31秒前
彭于晏应助科研通管家采纳,获得10
32秒前
搜集达人应助科研通管家采纳,获得10
32秒前
深情安青应助科研通管家采纳,获得10
32秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134943
求助须知:如何正确求助?哪些是违规求助? 2785830
关于积分的说明 7774354
捐赠科研通 2441699
什么是DOI,文献DOI怎么找? 1298104
科研通“疑难数据库(出版商)”最低求助积分说明 625079
版权声明 600825