亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

HyGate-GCN: Hybrid-Gate-Based Graph Convolutional Networks with dynamical ratings estimation for personalised POI recommendation

计算机科学 图形 卷积神经网络 估计 机器学习 人工智能 推荐系统 理论计算机科学 经济 管理
作者
Simon Nandwa Anjiri,Derui Ding,Yan Song
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:258: 125217-125217
标识
DOI:10.1016/j.eswa.2024.125217
摘要

The presence of user-generated ratings has dramatically facilitated the development of recommendation systems to aid users in discovering relevant and personalized points of interest (POI). It is worth mentioning that users' choices and preferences are not static but rather dynamic, reflecting the ever-changing nature of human experiences and influences. Furthermore, the utilization of social influence and geographical proximity of users is still insufficient to capture the homophily effect within networks. In this paper, an interesting Hybrid Gate-based Graph Convolutional Network (HyGate-GCN) combining with feature vectors embedding and interaction, where a modified gated-GCN is proposed for personalized recommendations by adequately employing the behavior of users' check-ins, temporal properties of users' decisions, social properties of users, as well as the user/POI profile information data. Specifically, a novel POI graph reflecting the geographical proximity is first established to describe the behavior of users' check-ins and, at the same time, an improved overlap ratio about POIs is employed to effectively describe temporal properties of users' decisions. Then, an attention mechanism is developed to encode feature vectors of both the users and POIs, with the objective of assigning higher importance to features that are deemed relevant. Furthermore, a temporal Kalman filter dynamically estimating ratings is developed to exploit the information about the evolving preferences of users over time. Finally, a modified gated-GCN model with merging and refining gates is constructed to effectively acquire the homophily phenomenon in both trust network graphs and spatial adjacency matrix graphs of users and POIs respectively. Experimental results provide evidence of the effectiveness of our approach in improving accuracy and personalization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
3秒前
6秒前
我是老大应助李桂芳采纳,获得10
7秒前
浮浮世世应助科研通管家采纳,获得30
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
英俊的铭应助科研通管家采纳,获得20
9秒前
浮游应助科研通管家采纳,获得10
9秒前
彭于晏应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
小二郎应助科研通管家采纳,获得10
9秒前
10秒前
压缩完成签到 ,获得积分10
17秒前
17秒前
18秒前
李健的小迷弟应助豆都采纳,获得10
18秒前
20秒前
32秒前
小张完成签到 ,获得积分10
35秒前
39秒前
46秒前
啵啵完成签到 ,获得积分10
47秒前
大胆的碧菡完成签到,获得积分10
47秒前
青柠完成签到,获得积分10
49秒前
51秒前
青柠发布了新的文献求助10
52秒前
Shang完成签到 ,获得积分10
54秒前
炙热的渊思完成签到,获得积分10
55秒前
平淡如天完成签到,获得积分10
55秒前
58秒前
59秒前
Hello应助剧院的饭桶采纳,获得30
1分钟前
顏泰楊完成签到,获得积分10
1分钟前
1分钟前
1分钟前
11122发布了新的文献求助10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493801
求助须知:如何正确求助?哪些是违规求助? 4591808
关于积分的说明 14434688
捐赠科研通 4524200
什么是DOI,文献DOI怎么找? 2478731
邀请新用户注册赠送积分活动 1463717
关于科研通互助平台的介绍 1436490