HyGate-GCN: Hybrid-Gate-Based Graph Convolutional Networks with dynamical ratings estimation for personalised POI recommendation

计算机科学 图形 卷积神经网络 估计 机器学习 人工智能 推荐系统 理论计算机科学 管理 经济
作者
Simon Nandwa Anjiri,Derui Ding,Yan Song
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:258: 125217-125217
标识
DOI:10.1016/j.eswa.2024.125217
摘要

The presence of user-generated ratings has dramatically facilitated the development of recommendation systems to aid users in discovering relevant and personalized points of interest (POI). It is worth mentioning that users' choices and preferences are not static but rather dynamic, reflecting the ever-changing nature of human experiences and influences. Furthermore, the utilization of social influence and geographical proximity of users is still insufficient to capture the homophily effect within networks. In this paper, an interesting Hybrid Gate-based Graph Convolutional Network (HyGate-GCN) combining with feature vectors embedding and interaction, where a modified gated-GCN is proposed for personalized recommendations by adequately employing the behavior of users' check-ins, temporal properties of users' decisions, social properties of users, as well as the user/POI profile information data. Specifically, a novel POI graph reflecting the geographical proximity is first established to describe the behavior of users' check-ins and, at the same time, an improved overlap ratio about POIs is employed to effectively describe temporal properties of users' decisions. Then, an attention mechanism is developed to encode feature vectors of both the users and POIs, with the objective of assigning higher importance to features that are deemed relevant. Furthermore, a temporal Kalman filter dynamically estimating ratings is developed to exploit the information about the evolving preferences of users over time. Finally, a modified gated-GCN model with merging and refining gates is constructed to effectively acquire the homophily phenomenon in both trust network graphs and spatial adjacency matrix graphs of users and POIs respectively. Experimental results provide evidence of the effectiveness of our approach in improving accuracy and personalization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杳鸢应助mc1220采纳,获得10
刚刚
rosa完成签到,获得积分10
刚刚
郑小七发布了新的文献求助10
1秒前
Tianxu Li完成签到,获得积分10
2秒前
2秒前
九川发布了新的文献求助10
3秒前
Lucas应助无限的隶采纳,获得10
3秒前
胡雅琴完成签到,获得积分10
3秒前
sakurai完成签到,获得积分10
4秒前
清歌扶酒关注了科研通微信公众号
4秒前
二尖瓣后叶举报ww求助涉嫌违规
4秒前
烟花应助轻松笙采纳,获得10
4秒前
沉默凡桃完成签到,获得积分10
5秒前
5秒前
luuuuuing发布了新的文献求助30
5秒前
啦啦啦完成签到,获得积分10
5秒前
小可发布了新的文献求助10
5秒前
6秒前
LKGG完成签到 ,获得积分10
6秒前
7秒前
7秒前
7秒前
周士乐发布了新的文献求助10
7秒前
Sunshine发布了新的文献求助10
7秒前
呼吸之野完成签到,获得积分10
8秒前
害怕的小懒虫完成签到,获得积分10
8秒前
思源应助Nefelibata采纳,获得10
9秒前
妮儿发布了新的文献求助10
9秒前
BareBear应助rosa采纳,获得10
9秒前
沉默凡桃发布了新的文献求助10
10秒前
Orange应助9℃采纳,获得10
10秒前
10秒前
一只橘子完成签到 ,获得积分10
10秒前
11秒前
韭黄发布了新的文献求助10
11秒前
西瓜发布了新的文献求助10
11秒前
Ll发布了新的文献求助10
11秒前
11秒前
wcy关注了科研通微信公众号
11秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759