HyGate-GCN: Hybrid-Gate-Based Graph Convolutional Networks with dynamical ratings estimation for personalised POI recommendation

计算机科学 图形 卷积神经网络 估计 机器学习 人工智能 推荐系统 理论计算机科学 经济 管理
作者
Simon Nandwa Anjiri,Derui Ding,Yan Song
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:258: 125217-125217
标识
DOI:10.1016/j.eswa.2024.125217
摘要

The presence of user-generated ratings has dramatically facilitated the development of recommendation systems to aid users in discovering relevant and personalized points of interest (POI). It is worth mentioning that users' choices and preferences are not static but rather dynamic, reflecting the ever-changing nature of human experiences and influences. Furthermore, the utilization of social influence and geographical proximity of users is still insufficient to capture the homophily effect within networks. In this paper, an interesting Hybrid Gate-based Graph Convolutional Network (HyGate-GCN) combining with feature vectors embedding and interaction, where a modified gated-GCN is proposed for personalized recommendations by adequately employing the behavior of users' check-ins, temporal properties of users' decisions, social properties of users, as well as the user/POI profile information data. Specifically, a novel POI graph reflecting the geographical proximity is first established to describe the behavior of users' check-ins and, at the same time, an improved overlap ratio about POIs is employed to effectively describe temporal properties of users' decisions. Then, an attention mechanism is developed to encode feature vectors of both the users and POIs, with the objective of assigning higher importance to features that are deemed relevant. Furthermore, a temporal Kalman filter dynamically estimating ratings is developed to exploit the information about the evolving preferences of users over time. Finally, a modified gated-GCN model with merging and refining gates is constructed to effectively acquire the homophily phenomenon in both trust network graphs and spatial adjacency matrix graphs of users and POIs respectively. Experimental results provide evidence of the effectiveness of our approach in improving accuracy and personalization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星黛露发布了新的文献求助10
1秒前
2秒前
2秒前
刚睡醒发布了新的文献求助10
2秒前
鱼尾蓝完成签到 ,获得积分10
3秒前
3秒前
爆米花应助激情的凌晴采纳,获得30
3秒前
欢喜代萱发布了新的文献求助10
3秒前
XYZ完成签到,获得积分10
3秒前
上官若男应助xiaowang采纳,获得10
3秒前
彭于晏应助姜姜姜姜采纳,获得10
3秒前
3秒前
王博完成签到,获得积分10
4秒前
justdoit发布了新的文献求助10
4秒前
4秒前
5秒前
小茶发布了新的文献求助10
5秒前
5秒前
6秒前
大熊发布了新的文献求助10
6秒前
cmdan完成签到,获得积分10
7秒前
7秒前
情怀应助大豆终结者采纳,获得10
7秒前
nn发布了新的文献求助10
8秒前
8秒前
8秒前
Tting完成签到 ,获得积分10
8秒前
CC给CC的求助进行了留言
9秒前
9秒前
9秒前
9秒前
nini完成签到,获得积分20
10秒前
共享精神应助小小橙采纳,获得10
11秒前
DDD完成签到 ,获得积分10
11秒前
11秒前
酷波er应助挖井的人采纳,获得10
11秒前
所所应助朝朝采纳,获得10
11秒前
脑洞疼应助漂亮的念双采纳,获得10
12秒前
12秒前
yu完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264674
求助须知:如何正确求助?哪些是违规求助? 4424909
关于积分的说明 13774672
捐赠科研通 4300019
什么是DOI,文献DOI怎么找? 2359586
邀请新用户注册赠送积分活动 1355696
关于科研通互助平台的介绍 1316961