亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Characterizing features affecting local ancestry inference performance in admixed populations

推论 进化生物学 R包 计算机科学 地理 谱系学 人工智能 生物 统计 数学 历史
作者
Jessica Honorato‐Mauer,Nirav N. Shah,Adam X. Maihofer,Clement C. Zai,Síntia Belangero,Caroline M. Nievergelt,Marcos Santoro,Elizabeth G. Atkinson
标识
DOI:10.1101/2024.08.26.609770
摘要

In recent years, significant efforts have been made to improve methods for genomic studies of admixed populations using Local Ancestry Inference (LAI). Accurate LAI is crucial to ensure downstream analyses reflect the genetic ancestry of research participants accurately. Here, we test analytic strategies for LAI to provide guidelines for optimal accuracy, focusing on admixed populations reflective of Latin America's primary continental ancestries - African (AFR), Amerindigenous (AMR), and European (EUR). Simulating LD-informed admixed haplotypes under a variety of 2 and 3-way admixture models, we implemented a standard LAI pipeline, testing three reference panel compositions to quantify their overall and ancestry-specific accuracy. We examined LAI miscall frequencies and true positive rates (TPR) across simulation models and continental ancestries. AMR tracts have notably reduced LAI accuracy as compared to EUR and AFR tracts in all comparisons, with TPR means for AMR ranging from 88-94%, EUR from 96-99% and AFR 98-99%. When LAI miscalls occurred, they most frequently erroneously called European ancestry in true Amerindigenous sites. Using a reference panel well-matched to the target population, even with a lower sample size, LAI produced true-positive estimates that were not statistically different from a high sample size but mismatched reference, while being more computationally efficient. While directly responsive to admixed Latin American cohort compositions, these trends are broadly useful for informing best practices for LAI across other admixed populations. Our findings reinforce the need for inclusion of more underrepresented populations in sequencing efforts to improve reference panels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助感性的靖仇采纳,获得10
5秒前
Never完成签到 ,获得积分10
8秒前
14秒前
19秒前
Picopy完成签到,获得积分10
57秒前
子平完成签到 ,获得积分0
1分钟前
1分钟前
苏黎沫发布了新的文献求助10
2分钟前
无情的听莲完成签到,获得积分10
2分钟前
赘婿应助苏黎沫采纳,获得10
2分钟前
3分钟前
乐乐应助远行客HB采纳,获得10
3分钟前
喜悦的小土豆完成签到 ,获得积分10
3分钟前
3分钟前
lsl完成签到 ,获得积分10
3分钟前
3分钟前
可爱的函函应助往复采纳,获得10
4分钟前
4分钟前
mark完成签到,获得积分10
5分钟前
义气的猫咪完成签到,获得积分10
5分钟前
CodeCraft应助xuan采纳,获得10
5分钟前
5分钟前
xuan发布了新的文献求助10
5分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
科研通AI6应助xys采纳,获得10
5分钟前
pigff发布了新的社区帖子
5分钟前
6分钟前
6分钟前
发不出sci的完成签到,获得积分10
7分钟前
杨横发布了新的文献求助10
7分钟前
GPTea应助幺幺采纳,获得20
7分钟前
ceeray23应助科研通管家采纳,获得10
7分钟前
耳东陈完成签到 ,获得积分10
8分钟前
虾青素给czw的求助进行了留言
8分钟前
JamesPei应助杨横采纳,获得10
8分钟前
8分钟前
DDIAO发布了新的文献求助10
8分钟前
又又完成签到 ,获得积分10
9分钟前
sujiaoziemo发布了新的文献求助10
9分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5199123
求助须知:如何正确求助?哪些是违规求助? 4379842
关于积分的说明 13638572
捐赠科研通 4236170
什么是DOI,文献DOI怎么找? 2323884
邀请新用户注册赠送积分活动 1321840
关于科研通互助平台的介绍 1273123