Differential quadrature lattice Boltzmann method for simulating fluid flows

格子Boltzmann方法 正交(天文学) 物理 统计物理学 数学 机械 应用数学 光学
作者
Mohsen Ghadyani,Mohammadreza Saremi Tehrani,Vali Enjilela
标识
DOI:10.1177/09544062241274702
摘要

In this study, a novel method for simulating incompressible flows using the lattice Boltzmann method is presented, aiming to improve robustness. This method is enhanced by the Qadyan numerical method. In the Qadyan method, Partial differential equations are solved using semi-discrete schemes combined with the differential quadrature method. To discretize the spatial derivatives of the lattice Boltzmann equation, the upwind differential quadrature method is employed, while the first-order forward difference scheme and/or fourth-order Runge-Kutta method handle the temporal term. The decision to exclude more complex methods stems from their requirement for refined computational grids. This work focuses on achievable results with similar types of uniform grids. The proposed scheme introduces and evaluates a novel method for solving both steady and unsteady problems. The present numerical method is validated by solving five benchmark problems, including heat diffusion on a slab, Stokes’ first problem, Taylor-Green vortex flow, flow around a flat plate, and flow in a lid-driven cavity. Reasonable agreements are obtained between the solutions obtained using this method and those from analytical/other numerical approaches. The Qadyan formulation delivers more accurate results compared to the finite-difference lattice Boltzmann method, (FDLBM), without requiring an increase in the number of grids. Notably, the novel Qadyan method achieves this increased accuracy without introducing additional complexity to the standard lattice Boltzmann method or resorting to non-uniform grids. This is possible due to the nature of the differential quadrature method, which utilizes more combinations of candidate stencils. The Qadyan method has a higher computational cost in comparison with the FDLBM.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
RJ应助toxin37采纳,获得10
1秒前
1秒前
1秒前
长孙明雪完成签到,获得积分10
2秒前
优秀的邪欢完成签到 ,获得积分10
2秒前
2秒前
万圣夜完成签到,获得积分10
2秒前
3秒前
我是老大应助LHZM采纳,获得10
4秒前
4秒前
安安完成签到,获得积分10
5秒前
丝绒发布了新的文献求助10
5秒前
6秒前
CipherSage应助A健采纳,获得10
6秒前
7秒前
乐乐应助12采纳,获得10
7秒前
Hiogteng发布了新的文献求助20
8秒前
tzhzh8发布了新的文献求助20
8秒前
xiaotianli发布了新的文献求助10
8秒前
闪闪乞完成签到,获得积分10
9秒前
诺克萨斯完成签到,获得积分10
9秒前
11秒前
电池小白完成签到,获得积分10
11秒前
wenllian完成签到,获得积分10
11秒前
11秒前
BowieHuang应助乘风文月采纳,获得20
12秒前
12秒前
xucc完成签到,获得积分10
12秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
飘逸锦程完成签到 ,获得积分0
13秒前
14秒前
无花果应助SigRosa采纳,获得10
14秒前
lxy完成签到,获得积分10
14秒前
dandelion完成签到,获得积分10
14秒前
脑洞疼应助阿酒采纳,获得10
14秒前
无花果应助勤奋成风采纳,获得10
15秒前
酷波er应助丝绒采纳,获得10
15秒前
朱信姿完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718168
求助须知:如何正确求助?哪些是违规求助? 5250844
关于积分的说明 15284812
捐赠科研通 4868418
什么是DOI,文献DOI怎么找? 2614132
邀请新用户注册赠送积分活动 1564020
关于科研通互助平台的介绍 1521476