Differential quadrature lattice Boltzmann method for simulating fluid flows

格子Boltzmann方法 正交(天文学) 物理 统计物理学 数学 机械 应用数学 光学
作者
Mohsen Ghadyani,Mohammadreza Saremi Tehrani,Vali Enjilela
标识
DOI:10.1177/09544062241274702
摘要

In this study, a novel method for simulating incompressible flows using the lattice Boltzmann method is presented, aiming to improve robustness. This method is enhanced by the Qadyan numerical method. In the Qadyan method, Partial differential equations are solved using semi-discrete schemes combined with the differential quadrature method. To discretize the spatial derivatives of the lattice Boltzmann equation, the upwind differential quadrature method is employed, while the first-order forward difference scheme and/or fourth-order Runge-Kutta method handle the temporal term. The decision to exclude more complex methods stems from their requirement for refined computational grids. This work focuses on achievable results with similar types of uniform grids. The proposed scheme introduces and evaluates a novel method for solving both steady and unsteady problems. The present numerical method is validated by solving five benchmark problems, including heat diffusion on a slab, Stokes’ first problem, Taylor-Green vortex flow, flow around a flat plate, and flow in a lid-driven cavity. Reasonable agreements are obtained between the solutions obtained using this method and those from analytical/other numerical approaches. The Qadyan formulation delivers more accurate results compared to the finite-difference lattice Boltzmann method, (FDLBM), without requiring an increase in the number of grids. Notably, the novel Qadyan method achieves this increased accuracy without introducing additional complexity to the standard lattice Boltzmann method or resorting to non-uniform grids. This is possible due to the nature of the differential quadrature method, which utilizes more combinations of candidate stencils. The Qadyan method has a higher computational cost in comparison with the FDLBM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tay应助孤独的根号三采纳,获得30
3秒前
黎明完成签到,获得积分20
5秒前
dlfg关注了科研通微信公众号
7秒前
7秒前
jimmy完成签到,获得积分10
9秒前
yufanhui应助孤独的根号三采纳,获得10
10秒前
慢慢发布了新的文献求助10
12秒前
xu完成签到,获得积分10
19秒前
丘比特应助念念采纳,获得10
20秒前
21秒前
西葫芦莲子粥完成签到,获得积分10
22秒前
听白完成签到 ,获得积分10
22秒前
23秒前
23秒前
老实幻姬发布了新的文献求助10
23秒前
搜集达人应助KKK采纳,获得10
23秒前
rzzz完成签到,获得积分10
24秒前
慢慢完成签到,获得积分10
25秒前
Yang发布了新的文献求助10
27秒前
Pepper发布了新的文献求助10
28秒前
29秒前
燕子发布了新的文献求助10
29秒前
30秒前
31秒前
孤独的根号三完成签到,获得积分20
31秒前
李银锋完成签到,获得积分10
32秒前
32秒前
不可思宇完成签到,获得积分10
32秒前
zlfan2197发布了新的文献求助10
34秒前
zby发布了新的文献求助10
34秒前
curtisness应助guozi采纳,获得20
35秒前
生动谷蓝完成签到,获得积分10
36秒前
燕子完成签到,获得积分10
36秒前
科研通AI2S应助lxx采纳,获得10
37秒前
MARK发布了新的文献求助10
37秒前
cm发布了新的文献求助10
38秒前
诸乘风发布了新的文献求助10
38秒前
38秒前
自然的飞鸟完成签到,获得积分10
38秒前
39秒前
高分求助中
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3108991
求助须知:如何正确求助?哪些是违规求助? 2759776
关于积分的说明 7657017
捐赠科研通 2414379
什么是DOI,文献DOI怎么找? 1281314
科研通“疑难数据库(出版商)”最低求助积分说明 618565
版权声明 599445