Optimal Eco-Driving with Infrastructure-to-Vehicle Communication for Speed Adaptation Based on Real-Time Dynamic Macroscopic Traffic Conditions

适应(眼睛) 计算机科学 实时计算 汽车工程 工程类 物理 光学
作者
Manfredi Villani,Ankur Shiledar,Brian Block,Matteo Spano,Giorgio Rizzoni
出处
期刊:SAE technical paper series 卷期号:1
标识
DOI:10.4271/2024-24-0025
摘要

<div class="section abstract"><div class="htmlview paragraph">Eco-driving algorithms use the available information about traffic and route conditions to optimize the vehicle speed and achieve enhanced energy consumption while fulfilling a travel time constraint. Depending on what information is available, when it becomes accessible, and the level of automation of the vehicle, different energy savings can be achieved. In their basic formulation, eco-driving algorithms only leverage static information to evaluate the optimal speed, such as posted speed limits and location of stop signs. More advanced algorithms may also consider dynamic information, such as the speed of the preceding vehicle and Signal Phase and Timing of traffic lights, thus achieving higher energy efficiency. The objective of the proposed work is to develop an eco-driving algorithm that can optimize energy consumption by leveraging not only static route information, but also dynamic macroscopic traffic conditions, which are assumed to be available in real-time through Infrastructure-to-Vehicle communication. In this work, modeling and simulation are used to demonstrate the operation of the algorithm, which is implemented in the controller of an electric truck model. The speed optimization is formulated as an optimal control problem and solved as a hierarchical Model Predictive Control using Approximate Dynamic Programming. Macroscopic traffic congestion is modelled as a dynamic process using the Lighthill-Whitham-Richards model, which is a first-order hyperbolic partial differential equation that models the spatial and temporal evolution of traffic density. The results show that for heavy traffic conditions, the speed adaptation based on real-time macroscopic traffic conditions, that is, considering the characteristic macro scales of traffic congestion, can result in reduced energy consumption, while not affecting the total travel time.</div></div>

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啊哦发布了新的文献求助10
刚刚
嘴嘴发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
2秒前
mini完成签到,获得积分10
2秒前
大模型应助mofeik采纳,获得10
3秒前
超级梦寒发布了新的文献求助10
4秒前
4秒前
Tobiuo完成签到,获得积分10
4秒前
元谷雪发布了新的文献求助10
4秒前
砺行应助RA000采纳,获得10
4秒前
王sy完成签到 ,获得积分10
5秒前
深蓝完成签到,获得积分10
6秒前
6秒前
阳光不二完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
guo发布了新的文献求助10
10秒前
爱科研168完成签到,获得积分10
10秒前
现代尔芙完成签到 ,获得积分10
10秒前
沐雪完成签到,获得积分10
10秒前
10秒前
考博圣体发布了新的文献求助10
10秒前
李健的粉丝团团长应助tgg采纳,获得10
11秒前
11秒前
搜集达人应助人机采纳,获得10
12秒前
12秒前
所所应助科研通管家采纳,获得10
12秒前
斯文败类应助科研通管家采纳,获得10
12秒前
sss发布了新的文献求助10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
Orange应助科研通管家采纳,获得10
13秒前
桐桐应助科研通管家采纳,获得10
13秒前
小蘑菇应助科研通管家采纳,获得10
13秒前
lzz完成签到,获得积分10
13秒前
科目三应助科研通管家采纳,获得10
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695408
求助须知:如何正确求助?哪些是违规求助? 5101761
关于积分的说明 15216105
捐赠科研通 4851704
什么是DOI,文献DOI怎么找? 2602676
邀请新用户注册赠送积分活动 1554320
关于科研通互助平台的介绍 1512360