Optimal Eco-Driving with Infrastructure-to-Vehicle Communication for Speed Adaptation Based on Real-Time Dynamic Macroscopic Traffic Conditions

适应(眼睛) 计算机科学 实时计算 汽车工程 工程类 物理 光学
作者
Manfredi Villani,Ankur Shiledar,Brian Block,Matteo Spano,Giorgio Rizzoni
出处
期刊:SAE technical paper series 卷期号:1
标识
DOI:10.4271/2024-24-0025
摘要

<div class="section abstract"><div class="htmlview paragraph">Eco-driving algorithms use the available information about traffic and route conditions to optimize the vehicle speed and achieve enhanced energy consumption while fulfilling a travel time constraint. Depending on what information is available, when it becomes accessible, and the level of automation of the vehicle, different energy savings can be achieved. In their basic formulation, eco-driving algorithms only leverage static information to evaluate the optimal speed, such as posted speed limits and location of stop signs. More advanced algorithms may also consider dynamic information, such as the speed of the preceding vehicle and Signal Phase and Timing of traffic lights, thus achieving higher energy efficiency. The objective of the proposed work is to develop an eco-driving algorithm that can optimize energy consumption by leveraging not only static route information, but also dynamic macroscopic traffic conditions, which are assumed to be available in real-time through Infrastructure-to-Vehicle communication. In this work, modeling and simulation are used to demonstrate the operation of the algorithm, which is implemented in the controller of an electric truck model. The speed optimization is formulated as an optimal control problem and solved as a hierarchical Model Predictive Control using Approximate Dynamic Programming. Macroscopic traffic congestion is modelled as a dynamic process using the Lighthill-Whitham-Richards model, which is a first-order hyperbolic partial differential equation that models the spatial and temporal evolution of traffic density. The results show that for heavy traffic conditions, the speed adaptation based on real-time macroscopic traffic conditions, that is, considering the characteristic macro scales of traffic congestion, can result in reduced energy consumption, while not affecting the total travel time.</div></div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
好好好发布了新的文献求助10
1秒前
2秒前
3秒前
3秒前
王修强完成签到,获得积分10
4秒前
快乐的友易完成签到,获得积分20
5秒前
赘婿应助邓木木采纳,获得10
5秒前
郑阔完成签到,获得积分10
6秒前
yfy_fairy完成签到,获得积分10
6秒前
兴奋的万声完成签到,获得积分10
7秒前
在水一方应助Cpp采纳,获得10
7秒前
7秒前
8秒前
8秒前
听风完成签到 ,获得积分10
9秒前
9秒前
王修强发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
ESLG发布了新的文献求助10
10秒前
贪玩翎完成签到,获得积分10
10秒前
why完成签到,获得积分10
10秒前
好好好完成签到,获得积分10
10秒前
磊哥1233发布了新的文献求助10
11秒前
11秒前
子车一手完成签到,获得积分10
12秒前
愉快迎南完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
13秒前
13秒前
76542cu发布了新的文献求助10
14秒前
yjy完成签到,获得积分10
14秒前
汉堡包应助Yddear采纳,获得20
14秒前
Zerolucky关注了科研通微信公众号
14秒前
高分求助中
美国药典 2000
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5239828
求助须知:如何正确求助?哪些是违规求助? 4407067
关于积分的说明 13717174
捐赠科研通 4275655
什么是DOI,文献DOI怎么找? 2346104
邀请新用户注册赠送积分活动 1343227
关于科研通互助平台的介绍 1301291