Optimal Eco-Driving with Infrastructure-to-Vehicle Communication for Speed Adaptation Based on Real-Time Dynamic Macroscopic Traffic Conditions

适应(眼睛) 计算机科学 实时计算 汽车工程 工程类 物理 光学
作者
Manfredi Villani,Ankur Shiledar,Brian Block,Matteo Spano,Giorgio Rizzoni
出处
期刊:SAE technical paper series 卷期号:1
标识
DOI:10.4271/2024-24-0025
摘要

<div class="section abstract"><div class="htmlview paragraph">Eco-driving algorithms use the available information about traffic and route conditions to optimize the vehicle speed and achieve enhanced energy consumption while fulfilling a travel time constraint. Depending on what information is available, when it becomes accessible, and the level of automation of the vehicle, different energy savings can be achieved. In their basic formulation, eco-driving algorithms only leverage static information to evaluate the optimal speed, such as posted speed limits and location of stop signs. More advanced algorithms may also consider dynamic information, such as the speed of the preceding vehicle and Signal Phase and Timing of traffic lights, thus achieving higher energy efficiency. The objective of the proposed work is to develop an eco-driving algorithm that can optimize energy consumption by leveraging not only static route information, but also dynamic macroscopic traffic conditions, which are assumed to be available in real-time through Infrastructure-to-Vehicle communication. In this work, modeling and simulation are used to demonstrate the operation of the algorithm, which is implemented in the controller of an electric truck model. The speed optimization is formulated as an optimal control problem and solved as a hierarchical Model Predictive Control using Approximate Dynamic Programming. Macroscopic traffic congestion is modelled as a dynamic process using the Lighthill-Whitham-Richards model, which is a first-order hyperbolic partial differential equation that models the spatial and temporal evolution of traffic density. The results show that for heavy traffic conditions, the speed adaptation based on real-time macroscopic traffic conditions, that is, considering the characteristic macro scales of traffic congestion, can result in reduced energy consumption, while not affecting the total travel time.</div></div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丸子_2025000完成签到,获得积分10
刚刚
刚刚
李健应助奥利奥采纳,获得10
1秒前
ST发布了新的文献求助10
1秒前
清爽晓凡完成签到 ,获得积分10
1秒前
LWL发布了新的文献求助10
3秒前
刚得力发布了新的文献求助10
3秒前
彭于晏应助孙琪琪采纳,获得10
3秒前
4秒前
小象发布了新的文献求助10
4秒前
开心易真完成签到 ,获得积分10
5秒前
hbhbj应助hkh采纳,获得10
6秒前
hbhbj应助hkh采纳,获得10
6秒前
hbhbj应助hkh采纳,获得10
6秒前
6秒前
10秒前
10秒前
大大彬完成签到 ,获得积分10
11秒前
han发布了新的文献求助10
11秒前
12秒前
Stride应助桃子牛肉酱采纳,获得10
12秒前
乐乐应助平硕采纳,获得10
13秒前
zzz完成签到 ,获得积分10
13秒前
刚得力完成签到,获得积分10
13秒前
chu完成签到,获得积分10
15秒前
精明觅荷发布了新的文献求助10
17秒前
mufulee完成签到,获得积分10
18秒前
冇_完成签到 ,获得积分10
18秒前
luoshi完成签到,获得积分10
20秒前
lee完成签到,获得积分10
21秒前
22秒前
FashionBoy应助chu采纳,获得10
22秒前
22秒前
23秒前
大胖小子完成签到,获得积分10
23秒前
Albert完成签到,获得积分10
24秒前
科研通AI2S应助AR采纳,获得10
26秒前
27秒前
doa发布了新的文献求助10
27秒前
量子星尘发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911940
求助须知:如何正确求助?哪些是违规求助? 4187232
关于积分的说明 13003449
捐赠科研通 3955200
什么是DOI,文献DOI怎么找? 2168624
邀请新用户注册赠送积分活动 1187094
关于科研通互助平台的介绍 1094340