Optimal Eco-Driving with Infrastructure-to-Vehicle Communication for Speed Adaptation Based on Real-Time Dynamic Macroscopic Traffic Conditions

适应(眼睛) 计算机科学 实时计算 汽车工程 工程类 物理 光学
作者
Manfredi Villani,Ankur Shiledar,Brian Block,Matteo Spano,Giorgio Rizzoni
出处
期刊:SAE technical paper series 卷期号:1
标识
DOI:10.4271/2024-24-0025
摘要

<div class="section abstract"><div class="htmlview paragraph">Eco-driving algorithms use the available information about traffic and route conditions to optimize the vehicle speed and achieve enhanced energy consumption while fulfilling a travel time constraint. Depending on what information is available, when it becomes accessible, and the level of automation of the vehicle, different energy savings can be achieved. In their basic formulation, eco-driving algorithms only leverage static information to evaluate the optimal speed, such as posted speed limits and location of stop signs. More advanced algorithms may also consider dynamic information, such as the speed of the preceding vehicle and Signal Phase and Timing of traffic lights, thus achieving higher energy efficiency. The objective of the proposed work is to develop an eco-driving algorithm that can optimize energy consumption by leveraging not only static route information, but also dynamic macroscopic traffic conditions, which are assumed to be available in real-time through Infrastructure-to-Vehicle communication. In this work, modeling and simulation are used to demonstrate the operation of the algorithm, which is implemented in the controller of an electric truck model. The speed optimization is formulated as an optimal control problem and solved as a hierarchical Model Predictive Control using Approximate Dynamic Programming. Macroscopic traffic congestion is modelled as a dynamic process using the Lighthill-Whitham-Richards model, which is a first-order hyperbolic partial differential equation that models the spatial and temporal evolution of traffic density. The results show that for heavy traffic conditions, the speed adaptation based on real-time macroscopic traffic conditions, that is, considering the characteristic macro scales of traffic congestion, can result in reduced energy consumption, while not affecting the total travel time.</div></div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
青黛完成签到 ,获得积分10
1秒前
励志小薛发布了新的文献求助10
1秒前
热锅上的蚂蚁完成签到,获得积分10
1秒前
卷卷完成签到,获得积分20
1秒前
grizz完成签到,获得积分10
1秒前
2秒前
欢呼的金毛完成签到,获得积分10
2秒前
隐形曼青应助葛一豪采纳,获得10
2秒前
逍遥游完成签到,获得积分10
2秒前
theThreeMagi发布了新的文献求助10
2秒前
在九月发布了新的文献求助10
3秒前
xiaoyu应助FXY采纳,获得10
3秒前
ybdst完成签到,获得积分10
4秒前
4秒前
5秒前
yan发布了新的文献求助10
5秒前
6秒前
6秒前
YYYY完成签到,获得积分10
6秒前
LYSM应助awoe采纳,获得20
6秒前
6秒前
7秒前
7秒前
无辜的如波完成签到,获得积分20
7秒前
8秒前
9秒前
陈末应助cnin采纳,获得10
9秒前
科目三应助刻苦的幻巧采纳,获得10
9秒前
9秒前
suiminmin发布了新的文献求助10
10秒前
???完成签到,获得积分10
11秒前
在水一方应助123采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
钟鸿盛Domi发布了新的文献求助10
12秒前
脑洞疼应助xiaohei采纳,获得10
12秒前
Orange应助茗苓采纳,获得20
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5429950
求助须知:如何正确求助?哪些是违规求助? 4543297
关于积分的说明 14186121
捐赠科研通 4461379
什么是DOI,文献DOI怎么找? 2446129
邀请新用户注册赠送积分活动 1437298
关于科研通互助平台的介绍 1414342