Optimal Eco-Driving with Infrastructure-to-Vehicle Communication for Speed Adaptation Based on Real-Time Dynamic Macroscopic Traffic Conditions

适应(眼睛) 计算机科学 实时计算 汽车工程 工程类 物理 光学
作者
Manfredi Villani,Ankur Shiledar,Brian Block,Matteo Spano,Giorgio Rizzoni
出处
期刊:SAE technical paper series 卷期号:1
标识
DOI:10.4271/2024-24-0025
摘要

<div class="section abstract"><div class="htmlview paragraph">Eco-driving algorithms use the available information about traffic and route conditions to optimize the vehicle speed and achieve enhanced energy consumption while fulfilling a travel time constraint. Depending on what information is available, when it becomes accessible, and the level of automation of the vehicle, different energy savings can be achieved. In their basic formulation, eco-driving algorithms only leverage static information to evaluate the optimal speed, such as posted speed limits and location of stop signs. More advanced algorithms may also consider dynamic information, such as the speed of the preceding vehicle and Signal Phase and Timing of traffic lights, thus achieving higher energy efficiency. The objective of the proposed work is to develop an eco-driving algorithm that can optimize energy consumption by leveraging not only static route information, but also dynamic macroscopic traffic conditions, which are assumed to be available in real-time through Infrastructure-to-Vehicle communication. In this work, modeling and simulation are used to demonstrate the operation of the algorithm, which is implemented in the controller of an electric truck model. The speed optimization is formulated as an optimal control problem and solved as a hierarchical Model Predictive Control using Approximate Dynamic Programming. Macroscopic traffic congestion is modelled as a dynamic process using the Lighthill-Whitham-Richards model, which is a first-order hyperbolic partial differential equation that models the spatial and temporal evolution of traffic density. The results show that for heavy traffic conditions, the speed adaptation based on real-time macroscopic traffic conditions, that is, considering the characteristic macro scales of traffic congestion, can result in reduced energy consumption, while not affecting the total travel time.</div></div>

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LXJY完成签到,获得积分10
刚刚
mlx完成签到,获得积分10
1秒前
1秒前
轻松夜白发布了新的文献求助10
2秒前
桐桐应助wy采纳,获得20
2秒前
2秒前
2秒前
3秒前
3秒前
Live发布了新的文献求助10
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
马成芳完成签到,获得积分20
4秒前
5秒前
徐凤年发布了新的文献求助10
5秒前
皮不起来的国国完成签到,获得积分10
5秒前
do0发布了新的文献求助10
6秒前
iyuyu完成签到,获得积分10
6秒前
wangjialin完成签到,获得积分20
6秒前
罗如琳发布了新的文献求助10
7秒前
謓言发布了新的文献求助10
7秒前
丘比特应助优雅的剑心采纳,获得10
8秒前
12345678发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
黄梅发布了新的文献求助10
8秒前
Robin发布了新的文献求助10
10秒前
10秒前
ad关注了科研通微信公众号
10秒前
10秒前
12秒前
英姑应助shego采纳,获得10
12秒前
涨知识ing完成签到,获得积分10
13秒前
mlx发布了新的文献求助10
13秒前
Hello应助重要的半青采纳,获得10
14秒前
嘿嘿完成签到,获得积分10
14秒前
16秒前
科研通AI6.1应助malingwei采纳,获得10
17秒前
王欣完成签到 ,获得积分10
17秒前
尽舜尧完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5761761
求助须知:如何正确求助?哪些是违规求助? 5531887
关于积分的说明 15400675
捐赠科研通 4897994
什么是DOI,文献DOI怎么找? 2634640
邀请新用户注册赠送积分活动 1582800
关于科研通互助平台的介绍 1538049