Optimal Eco-Driving with Infrastructure-to-Vehicle Communication for Speed Adaptation Based on Real-Time Dynamic Macroscopic Traffic Conditions

适应(眼睛) 计算机科学 实时计算 汽车工程 工程类 物理 光学
作者
Manfredi Villani,Ankur Shiledar,Brian Block,Matteo Spano,Giorgio Rizzoni
出处
期刊:SAE technical paper series 卷期号:1
标识
DOI:10.4271/2024-24-0025
摘要

<div class="section abstract"><div class="htmlview paragraph">Eco-driving algorithms use the available information about traffic and route conditions to optimize the vehicle speed and achieve enhanced energy consumption while fulfilling a travel time constraint. Depending on what information is available, when it becomes accessible, and the level of automation of the vehicle, different energy savings can be achieved. In their basic formulation, eco-driving algorithms only leverage static information to evaluate the optimal speed, such as posted speed limits and location of stop signs. More advanced algorithms may also consider dynamic information, such as the speed of the preceding vehicle and Signal Phase and Timing of traffic lights, thus achieving higher energy efficiency. The objective of the proposed work is to develop an eco-driving algorithm that can optimize energy consumption by leveraging not only static route information, but also dynamic macroscopic traffic conditions, which are assumed to be available in real-time through Infrastructure-to-Vehicle communication. In this work, modeling and simulation are used to demonstrate the operation of the algorithm, which is implemented in the controller of an electric truck model. The speed optimization is formulated as an optimal control problem and solved as a hierarchical Model Predictive Control using Approximate Dynamic Programming. Macroscopic traffic congestion is modelled as a dynamic process using the Lighthill-Whitham-Richards model, which is a first-order hyperbolic partial differential equation that models the spatial and temporal evolution of traffic density. The results show that for heavy traffic conditions, the speed adaptation based on real-time macroscopic traffic conditions, that is, considering the characteristic macro scales of traffic congestion, can result in reduced energy consumption, while not affecting the total travel time.</div></div>

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
美好未来发布了新的文献求助10
刚刚
swiftie完成签到,获得积分10
刚刚
芝士芝士发布了新的文献求助10
1秒前
重要文龙完成签到,获得积分10
1秒前
球球啦发布了新的文献求助10
1秒前
2秒前
听风发布了新的文献求助10
2秒前
hxm完成签到,获得积分10
3秒前
3秒前
坚强馒头完成签到,获得积分20
3秒前
小乖乖完成签到,获得积分20
3秒前
爱上叶子的猫完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
小袁完成签到,获得积分10
5秒前
saveMA完成签到,获得积分10
5秒前
6秒前
西乡塘塘主完成签到,获得积分10
6秒前
五1232发布了新的文献求助10
6秒前
6秒前
嗯哼应助buliqiuqiu采纳,获得20
6秒前
月亮不睡我不睡完成签到,获得积分10
7秒前
叶白山完成签到,获得积分10
7秒前
cj完成签到 ,获得积分20
8秒前
8秒前
bkagyin应助happy采纳,获得10
8秒前
8秒前
小羊咩咩发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
陈嘻嘻嘻嘻完成签到,获得积分10
9秒前
z3Q应助可靠紫青采纳,获得10
10秒前
Owen应助藏在众多孤星之中采纳,获得10
10秒前
HappyPlato发布了新的文献求助10
10秒前
小乖乖发布了新的文献求助10
11秒前
心灵美毛豆关注了科研通微信公众号
11秒前
严剑封发布了新的文献求助10
12秒前
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305352
求助须知:如何正确求助?哪些是违规求助? 2939136
关于积分的说明 8491898
捐赠科研通 2613589
什么是DOI,文献DOI怎么找? 1427527
科研通“疑难数据库(出版商)”最低求助积分说明 663054
邀请新用户注册赠送积分活动 647784