Optimal Eco-Driving with Infrastructure-to-Vehicle Communication for Speed Adaptation Based on Real-Time Dynamic Macroscopic Traffic Conditions

适应(眼睛) 计算机科学 实时计算 汽车工程 工程类 物理 光学
作者
Manfredi Villani,Ankur Shiledar,Brian Block,Matteo Spano,Giorgio Rizzoni
出处
期刊:SAE technical paper series 卷期号:1
标识
DOI:10.4271/2024-24-0025
摘要

<div class="section abstract"><div class="htmlview paragraph">Eco-driving algorithms use the available information about traffic and route conditions to optimize the vehicle speed and achieve enhanced energy consumption while fulfilling a travel time constraint. Depending on what information is available, when it becomes accessible, and the level of automation of the vehicle, different energy savings can be achieved. In their basic formulation, eco-driving algorithms only leverage static information to evaluate the optimal speed, such as posted speed limits and location of stop signs. More advanced algorithms may also consider dynamic information, such as the speed of the preceding vehicle and Signal Phase and Timing of traffic lights, thus achieving higher energy efficiency. The objective of the proposed work is to develop an eco-driving algorithm that can optimize energy consumption by leveraging not only static route information, but also dynamic macroscopic traffic conditions, which are assumed to be available in real-time through Infrastructure-to-Vehicle communication. In this work, modeling and simulation are used to demonstrate the operation of the algorithm, which is implemented in the controller of an electric truck model. The speed optimization is formulated as an optimal control problem and solved as a hierarchical Model Predictive Control using Approximate Dynamic Programming. Macroscopic traffic congestion is modelled as a dynamic process using the Lighthill-Whitham-Richards model, which is a first-order hyperbolic partial differential equation that models the spatial and temporal evolution of traffic density. The results show that for heavy traffic conditions, the speed adaptation based on real-time macroscopic traffic conditions, that is, considering the characteristic macro scales of traffic congestion, can result in reduced energy consumption, while not affecting the total travel time.</div></div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Seagull完成签到,获得积分10
刚刚
妮妮发布了新的文献求助10
刚刚
玖Nine发布了新的文献求助10
刚刚
大气夜南完成签到,获得积分10
1秒前
zzz236完成签到,获得积分10
1秒前
1秒前
小朱佩奇发布了新的文献求助20
2秒前
2秒前
2秒前
2秒前
小二郎应助苻慕梅采纳,获得10
2秒前
YU关注了科研通微信公众号
2秒前
高求发布了新的文献求助10
3秒前
呆萌朝雪发布了新的文献求助10
3秒前
小巧书雪完成签到,获得积分10
3秒前
3秒前
达到应助ye采纳,获得10
3秒前
溪年完成签到,获得积分10
3秒前
嘻嘻嘻发布了新的文献求助10
3秒前
养恩完成签到,获得积分10
3秒前
4秒前
Aurora发布了新的文献求助10
4秒前
6秒前
YiXianCoA发布了新的文献求助10
7秒前
张靖超完成签到 ,获得积分10
7秒前
馒头酶发布了新的文献求助10
7秒前
7秒前
汕头凯奇发布了新的文献求助10
8秒前
9秒前
9秒前
飘飘素晴发布了新的文献求助10
10秒前
温婉发布了新的文献求助20
10秒前
10秒前
余俊兰发布了新的文献求助10
11秒前
11秒前
11秒前
传奇3应助噜噜采纳,获得10
11秒前
金世航完成签到,获得积分20
11秒前
哈哈hehe完成签到,获得积分10
11秒前
木木完成签到,获得积分10
12秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961269
求助须知:如何正确求助?哪些是违规求助? 3507536
关于积分的说明 11136688
捐赠科研通 3239991
什么是DOI,文献DOI怎么找? 1790625
邀请新用户注册赠送积分活动 872449
科研通“疑难数据库(出版商)”最低求助积分说明 803199