Optimal Eco-Driving with Infrastructure-to-Vehicle Communication for Speed Adaptation Based on Real-Time Dynamic Macroscopic Traffic Conditions

适应(眼睛) 计算机科学 实时计算 汽车工程 工程类 物理 光学
作者
Manfredi Villani,Ankur Shiledar,Brian Block,Matteo Spano,Giorgio Rizzoni
出处
期刊:SAE technical paper series 卷期号:1
标识
DOI:10.4271/2024-24-0025
摘要

<div class="section abstract"><div class="htmlview paragraph">Eco-driving algorithms use the available information about traffic and route conditions to optimize the vehicle speed and achieve enhanced energy consumption while fulfilling a travel time constraint. Depending on what information is available, when it becomes accessible, and the level of automation of the vehicle, different energy savings can be achieved. In their basic formulation, eco-driving algorithms only leverage static information to evaluate the optimal speed, such as posted speed limits and location of stop signs. More advanced algorithms may also consider dynamic information, such as the speed of the preceding vehicle and Signal Phase and Timing of traffic lights, thus achieving higher energy efficiency. The objective of the proposed work is to develop an eco-driving algorithm that can optimize energy consumption by leveraging not only static route information, but also dynamic macroscopic traffic conditions, which are assumed to be available in real-time through Infrastructure-to-Vehicle communication. In this work, modeling and simulation are used to demonstrate the operation of the algorithm, which is implemented in the controller of an electric truck model. The speed optimization is formulated as an optimal control problem and solved as a hierarchical Model Predictive Control using Approximate Dynamic Programming. Macroscopic traffic congestion is modelled as a dynamic process using the Lighthill-Whitham-Richards model, which is a first-order hyperbolic partial differential equation that models the spatial and temporal evolution of traffic density. The results show that for heavy traffic conditions, the speed adaptation based on real-time macroscopic traffic conditions, that is, considering the characteristic macro scales of traffic congestion, can result in reduced energy consumption, while not affecting the total travel time.</div></div>

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闫111完成签到,获得积分10
1秒前
2秒前
贪玩访枫完成签到,获得积分20
2秒前
CAOHOU应助刚子采纳,获得10
2秒前
2秒前
2秒前
2秒前
3秒前
3秒前
3秒前
哈哈呢么发布了新的文献求助10
4秒前
南京发布了新的文献求助10
4秒前
4秒前
GC发布了新的文献求助10
5秒前
5秒前
合适忆山完成签到,获得积分20
5秒前
量子星尘发布了新的文献求助10
5秒前
科研通AI6.1应助看不懂采纳,获得10
6秒前
6秒前
AAA建材王哥完成签到,获得积分10
7秒前
李爱国应助狂野的南松采纳,获得10
7秒前
华仔应助wsysweet采纳,获得10
8秒前
Zoe发布了新的文献求助10
8秒前
小脚丫完成签到,获得积分10
9秒前
执着谷兰发布了新的文献求助20
9秒前
9秒前
9秒前
9秒前
fengjingjing发布了新的文献求助10
9秒前
123发布了新的文献求助10
9秒前
10秒前
old赵应助cL采纳,获得10
10秒前
烟花应助轻松新之采纳,获得10
10秒前
11秒前
善学以致用应助147采纳,获得10
12秒前
大模型应助Chara_kara采纳,获得10
12秒前
13秒前
科研狼完成签到,获得积分10
13秒前
执着乐双完成签到,获得积分10
13秒前
缥缈傥完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784063
求助须知:如何正确求助?哪些是违规求助? 5680443
关于积分的说明 15462954
捐赠科研通 4913367
什么是DOI,文献DOI怎么找? 2644620
邀请新用户注册赠送积分活动 1592452
关于科研通互助平台的介绍 1547078