Optimal Eco-Driving with Infrastructure-to-Vehicle Communication for Speed Adaptation Based on Real-Time Dynamic Macroscopic Traffic Conditions

适应(眼睛) 计算机科学 实时计算 汽车工程 工程类 物理 光学
作者
Manfredi Villani,Ankur Shiledar,Brian Block,Matteo Spano,Giorgio Rizzoni
出处
期刊:SAE technical paper series 卷期号:1
标识
DOI:10.4271/2024-24-0025
摘要

<div class="section abstract"><div class="htmlview paragraph">Eco-driving algorithms use the available information about traffic and route conditions to optimize the vehicle speed and achieve enhanced energy consumption while fulfilling a travel time constraint. Depending on what information is available, when it becomes accessible, and the level of automation of the vehicle, different energy savings can be achieved. In their basic formulation, eco-driving algorithms only leverage static information to evaluate the optimal speed, such as posted speed limits and location of stop signs. More advanced algorithms may also consider dynamic information, such as the speed of the preceding vehicle and Signal Phase and Timing of traffic lights, thus achieving higher energy efficiency. The objective of the proposed work is to develop an eco-driving algorithm that can optimize energy consumption by leveraging not only static route information, but also dynamic macroscopic traffic conditions, which are assumed to be available in real-time through Infrastructure-to-Vehicle communication. In this work, modeling and simulation are used to demonstrate the operation of the algorithm, which is implemented in the controller of an electric truck model. The speed optimization is formulated as an optimal control problem and solved as a hierarchical Model Predictive Control using Approximate Dynamic Programming. Macroscopic traffic congestion is modelled as a dynamic process using the Lighthill-Whitham-Richards model, which is a first-order hyperbolic partial differential equation that models the spatial and temporal evolution of traffic density. The results show that for heavy traffic conditions, the speed adaptation based on real-time macroscopic traffic conditions, that is, considering the characteristic macro scales of traffic congestion, can result in reduced energy consumption, while not affecting the total travel time.</div></div>

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学术牛马发布了新的文献求助10
刚刚
刚刚
子车茗应助丁真人采纳,获得30
刚刚
无机盐发布了新的文献求助10
刚刚
2秒前
张静瑶完成签到,获得积分10
2秒前
群山完成签到 ,获得积分10
3秒前
3秒前
冷酷的水壶完成签到,获得积分10
4秒前
4秒前
雾山五行发布了新的文献求助10
6秒前
希望天下0贩的0应助Alan采纳,获得10
6秒前
脑洞疼应助熊熊阁采纳,获得10
6秒前
打打应助xiaoyao采纳,获得10
6秒前
7秒前
鲲kun完成签到,获得积分10
7秒前
7秒前
科研通AI6应助wwl采纳,获得10
7秒前
良景似尘完成签到,获得积分10
8秒前
聪慧的白猫完成签到,获得积分10
8秒前
财路通八方完成签到 ,获得积分10
8秒前
LL完成签到,获得积分10
9秒前
好好学习发布了新的文献求助10
9秒前
10秒前
华仔应助终抵星空采纳,获得10
10秒前
田様应助等待的凝芙采纳,获得10
10秒前
共享精神应助仁仁仁采纳,获得10
10秒前
文盲文案完成签到,获得积分10
11秒前
子晓时夜完成签到,获得积分10
12秒前
wen完成签到,获得积分10
12秒前
12秒前
大个应助单薄的发卡采纳,获得10
12秒前
Hello应助123采纳,获得10
12秒前
Hello应助无机盐采纳,获得10
13秒前
研友_ZzwoR8完成签到 ,获得积分10
14秒前
开朗指甲油完成签到,获得积分10
15秒前
15秒前
小蘑菇应助好好学习采纳,获得10
15秒前
专注新晴关注了科研通微信公众号
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600383
求助须知:如何正确求助?哪些是违规求助? 4686008
关于积分的说明 14841407
捐赠科研通 4676475
什么是DOI,文献DOI怎么找? 2538721
邀请新用户注册赠送积分活动 1505781
关于科研通互助平台的介绍 1471186