亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A vision transformer‐based deep transfer learning nomogram for predicting lymph node metastasis in lung adenocarcinoma

列线图 医学 卷积神经网络 深度学习 逻辑回归 放射科 肺癌 人工智能 肿瘤科 内科学 计算机科学
作者
Chuan‐Yu Chen,Yi Luo,Qiuyang Hou,Jun Qiu,Shuya Yuan,Kexue Deng
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17414
摘要

Abstract Background Lymph node metastasis (LNM) plays a crucial role in the management of lung cancer; however, the ability of chest computed tomography (CT) imaging to detect LNM status is limited. Purpose This study aimed to develop and validate a vision transformer‐based deep transfer learning nomogram for predicting LNM in lung adenocarcinoma patients using preoperative unenhanced chest CT imaging. Methods This study included 528 patients with lung adenocarcinoma who were randomly divided into training and validation cohorts at a 7:3 ratio. The pretrained vision transformer (ViT) was utilized to extract deep transfer learning (DTL) feature, and logistic regression was employed to construct a ViT‐based DTL model. Subsequently, the model was compared with six classical convolutional neural network (CNN) models. Finally, the ViT‐based DTL signature was combined with independent clinical predictors to construct a ViT‐based deep transfer learning nomogram (DTLN). Results The ViT‐based DTL model showed good performance, with an area under the curve (AUC) of 0.821 (95% CI, 0.775–0.867) in the training cohort and 0.825 (95% CI, 0.758–0.891) in the validation cohort. The ViT‐based DTL model demonstrated comparable performance to classical CNN models in predicting LNM, and the ViT‐based DTL signature was then used to construct ViT‐based DTLN with independent clinical predictors such as tumor maximum diameter, location, and density. The DTLN achieved the best predictive performance, with AUCs of 0.865 (95% CI, 0.827–0.903) and 0.894 (95% CI, 0845–0942), respectively, surpassing both the clinical factor model and the ViT‐based DTL model ( p < 0.001). Conclusion This study developed a new DTL model based on ViT to predict LNM status in lung adenocarcinoma patients and revealed that the performance of the ViT‐based DTL model was comparable to that of classical CNN models, confirming that ViT was viable for deep learning tasks involving medical images. The ViT‐based DTLN performed exceptionally well and can assist clinicians and radiologists in making accurate judgments and formulating appropriate treatment plans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
52秒前
轻松小张发布了新的文献求助10
58秒前
楠茸完成签到 ,获得积分10
59秒前
吴哔哔完成签到,获得积分10
1分钟前
科研通AI5应助轻松小张采纳,获得10
1分钟前
小地蛋完成签到 ,获得积分10
1分钟前
1分钟前
SciGPT应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
贪玩小小完成签到 ,获得积分10
2分钟前
嘻嘻嘻完成签到,获得积分10
2分钟前
卢本伟牛逼完成签到 ,获得积分10
2分钟前
火火完成签到 ,获得积分10
3分钟前
zhang完成签到 ,获得积分10
3分钟前
科研通AI5应助超级的天晴采纳,获得10
3分钟前
上官若男应助ace采纳,获得10
3分钟前
大模型应助whiteball采纳,获得10
3分钟前
宝贝丫头完成签到 ,获得积分10
3分钟前
3分钟前
轻松小张发布了新的文献求助10
3分钟前
3分钟前
科研通AI5应助科研通管家采纳,获得10
4分钟前
小胜完成签到 ,获得积分10
4分钟前
leev完成签到,获得积分10
4分钟前
科研通AI5应助轻松小张采纳,获得10
4分钟前
4分钟前
呆萌幻竹完成签到 ,获得积分10
4分钟前
冷静新烟完成签到,获得积分10
4分钟前
Getlogger完成签到,获得积分10
4分钟前
超级的天晴完成签到,获得积分20
4分钟前
白金之星完成签到 ,获得积分10
4分钟前
蜂蜜罐头完成签到 ,获得积分10
4分钟前
4分钟前
轻松小张发布了新的文献求助10
4分钟前
SciGPT应助岛语安采纳,获得10
4分钟前
科研通AI5应助轻松小张采纳,获得10
5分钟前
小蛮样完成签到,获得积分10
5分钟前
5分钟前
大个应助Sephirex采纳,获得30
5分钟前
淡然宛凝完成签到 ,获得积分10
5分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775899
求助须知:如何正确求助?哪些是违规求助? 3321496
关于积分的说明 10205942
捐赠科研通 3036585
什么是DOI,文献DOI怎么找? 1666340
邀请新用户注册赠送积分活动 797351
科研通“疑难数据库(出版商)”最低求助积分说明 757801