已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A vision transformer‐based deep transfer learning nomogram for predicting lymph node metastasis in lung adenocarcinoma

列线图 医学 卷积神经网络 深度学习 逻辑回归 放射科 肺癌 人工智能 肿瘤科 内科学 计算机科学
作者
Chuan‐Yu Chen,Yi Luo,Qiuyang Hou,Jun Qiu,Shuya Yuan,Kexue Deng
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17414
摘要

Abstract Background Lymph node metastasis (LNM) plays a crucial role in the management of lung cancer; however, the ability of chest computed tomography (CT) imaging to detect LNM status is limited. Purpose This study aimed to develop and validate a vision transformer‐based deep transfer learning nomogram for predicting LNM in lung adenocarcinoma patients using preoperative unenhanced chest CT imaging. Methods This study included 528 patients with lung adenocarcinoma who were randomly divided into training and validation cohorts at a 7:3 ratio. The pretrained vision transformer (ViT) was utilized to extract deep transfer learning (DTL) feature, and logistic regression was employed to construct a ViT‐based DTL model. Subsequently, the model was compared with six classical convolutional neural network (CNN) models. Finally, the ViT‐based DTL signature was combined with independent clinical predictors to construct a ViT‐based deep transfer learning nomogram (DTLN). Results The ViT‐based DTL model showed good performance, with an area under the curve (AUC) of 0.821 (95% CI, 0.775–0.867) in the training cohort and 0.825 (95% CI, 0.758–0.891) in the validation cohort. The ViT‐based DTL model demonstrated comparable performance to classical CNN models in predicting LNM, and the ViT‐based DTL signature was then used to construct ViT‐based DTLN with independent clinical predictors such as tumor maximum diameter, location, and density. The DTLN achieved the best predictive performance, with AUCs of 0.865 (95% CI, 0.827–0.903) and 0.894 (95% CI, 0845–0942), respectively, surpassing both the clinical factor model and the ViT‐based DTL model ( p < 0.001). Conclusion This study developed a new DTL model based on ViT to predict LNM status in lung adenocarcinoma patients and revealed that the performance of the ViT‐based DTL model was comparable to that of classical CNN models, confirming that ViT was viable for deep learning tasks involving medical images. The ViT‐based DTLN performed exceptionally well and can assist clinicians and radiologists in making accurate judgments and formulating appropriate treatment plans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cheung发布了新的文献求助10
2秒前
关小小完成签到 ,获得积分20
4秒前
4秒前
南橘发布了新的文献求助10
4秒前
5秒前
科研通AI2S应助李大眼采纳,获得10
5秒前
6秒前
7秒前
Tina完成签到 ,获得积分10
7秒前
李爱国应助wzswzs采纳,获得10
8秒前
辛勤之云发布了新的文献求助20
8秒前
aaaaarfv发布了新的文献求助10
10秒前
科研通AI2S应助追寻巨人采纳,获得10
14秒前
Hello应助ccleo采纳,获得10
17秒前
19秒前
23秒前
一路向南发布了新的文献求助10
24秒前
27秒前
28秒前
从容芮应助科研通管家采纳,获得10
29秒前
从容芮应助科研通管家采纳,获得10
29秒前
Ava应助科研通管家采纳,获得10
29秒前
小马甲应助科研通管家采纳,获得10
29秒前
从容芮应助科研通管家采纳,获得10
30秒前
NexusExplorer应助科研通管家采纳,获得10
30秒前
CipherSage应助科研通管家采纳,获得10
30秒前
vooooo完成签到,获得积分10
30秒前
30秒前
MchemG应助科研通管家采纳,获得10
30秒前
naotbald完成签到,获得积分10
30秒前
李鹏飞完成签到 ,获得积分10
30秒前
31秒前
32秒前
33秒前
酷波er应助小木头人采纳,获得10
33秒前
wzswzs发布了新的文献求助10
34秒前
35秒前
寻雪发布了新的文献求助10
36秒前
向向完成签到,获得积分10
38秒前
lochi发布了新的文献求助10
38秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
Mantodea of the World: Species Catalog 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3407566
求助须知:如何正确求助?哪些是违规求助? 3012106
关于积分的说明 8852518
捐赠科研通 2699242
什么是DOI,文献DOI怎么找? 1479894
科研通“疑难数据库(出版商)”最低求助积分说明 684092
邀请新用户注册赠送积分活动 678354