GPT is an effective tool for multilingual psychological text analysis

计算机科学 自然语言处理 人工智能 编码(社会科学) 文本挖掘 情绪分析 情报检索 数学 统计
作者
Steve Rathje,Dan-Mircea Mirea,Ilia Sucholutsky,Raja Marjieh,Claire Robertson,Jay Joseph Van Bavel
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:121 (34) 被引量:18
标识
DOI:10.1073/pnas.2308950121
摘要

The social and behavioral sciences have been increasingly using automated text analysis to measure psychological constructs in text. We explore whether GPT, the large-language model (LLM) underlying the AI chatbot ChatGPT, can be used as a tool for automated psychological text analysis in several languages. Across 15 datasets ( n = 47,925 manually annotated tweets and news headlines), we tested whether different versions of GPT (3.5 Turbo, 4, and 4 Turbo) can accurately detect psychological constructs (sentiment, discrete emotions, offensiveness, and moral foundations) across 12 languages. We found that GPT ( r = 0.59 to 0.77) performed much better than English-language dictionary analysis ( r = 0.20 to 0.30) at detecting psychological constructs as judged by manual annotators. GPT performed nearly as well as, and sometimes better than, several top-performing fine-tuned machine learning models. Moreover, GPT’s performance improved across successive versions of the model, particularly for lesser-spoken languages, and became less expensive. Overall, GPT may be superior to many existing methods of automated text analysis, since it achieves relatively high accuracy across many languages, requires no training data, and is easy to use with simple prompts (e.g., “is this text negative?”) and little coding experience. We provide sample code and a video tutorial for analyzing text with the GPT application programming interface. We argue that GPT and other LLMs help democratize automated text analysis by making advanced natural language processing capabilities more accessible, and may help facilitate more cross-linguistic research with understudied languages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
碧蓝千凡发布了新的文献求助10
刚刚
M7完成签到,获得积分10
刚刚
1秒前
echo发布了新的文献求助10
3秒前
独特伟泽发布了新的文献求助20
3秒前
irisjlj发布了新的文献求助10
4秒前
Lucas应助xdlongchem采纳,获得10
5秒前
碧蓝千凡完成签到,获得积分10
6秒前
柠檬汽水完成签到,获得积分10
6秒前
田様应助不想工作的小辉采纳,获得10
7秒前
8秒前
随大溜关注了科研通微信公众号
8秒前
12发布了新的文献求助10
8秒前
9秒前
e746700020发布了新的文献求助10
9秒前
尘烟完成签到,获得积分10
9秒前
四月完成签到 ,获得积分10
10秒前
10秒前
zzz完成签到,获得积分10
11秒前
13秒前
科目三应助热心犀牛采纳,获得10
13秒前
15秒前
共享精神应助LiuKangwei采纳,获得10
15秒前
16秒前
甜甜哩发布了新的文献求助10
18秒前
BowenShi完成签到 ,获得积分10
18秒前
刘斌发布了新的文献求助10
19秒前
万能图书馆应助dandan采纳,获得30
19秒前
在路上ing完成签到 ,获得积分10
21秒前
21秒前
22秒前
溪平川完成签到,获得积分20
22秒前
Leopold发布了新的文献求助30
23秒前
24秒前
聪明曼凡完成签到 ,获得积分10
24秒前
xzs发布了新的文献求助20
27秒前
28秒前
Keyansunli完成签到,获得积分10
29秒前
善学以致用应助Mirabel采纳,获得10
29秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153169
求助须知:如何正确求助?哪些是违规求助? 2804457
关于积分的说明 7859169
捐赠科研通 2462280
什么是DOI,文献DOI怎么找? 1310725
科研通“疑难数据库(出版商)”最低求助积分说明 629377
版权声明 601794