多硫化物
氧化还原
硫黄
催化作用
锂(药物)
钴
碳纤维
化学工程
限制
材料科学
离子
扩散
吸附
纳米技术
化学
多孔性
电极
无机化学
物理化学
有机化学
电解质
复合材料
医学
机械工程
物理
复合数
工程类
热力学
内分泌学
作者
Yunqiang Zhang,Huaming Yuan,Enyan Guo,Shunwei Chen,Manman Ren,Jingyun Ma,Jiaxi Cui,Mei Li,Laiying Jing,Li Li
标识
DOI:10.1016/j.jechem.2024.08.003
摘要
Lithium-sulfur (Li-S) batteries suffer from the shuttle effect of soluble lithium polysulfides (LiPSs) and slow redox kinetics, significantly limiting their practical application. Although single-atom catalysts (SACs) offer a promising strategy to address these challenges, designing materials with optimal adsorption force and high catalytic activity remains a grand challenge. Here, we present a cobalt (Co)-based SAC with unique Co-O2N2 coordination structures for Li-S batteries. Both experimental and theoretical studies demonstrate that O, N-coordinated Co single atoms anchored on a porous carbon framework (Co/NOC) effectively capture LiPSs and dramatically catalyze bidirectional polysulfide conversion. The expanded carbon layer spacing facilitates lithium ions diffusion and maximizes the exposure of active sites. As a result, Li-S batteries incorporating Co/NOC as separators exhibit outstanding rate performance (906.6 mAh g−1 at 3 C) and exceptional cycling stability, even at −10 °C. Furthermore, with a high sulfur loading of 12.0 mg cm−2, the areal specific capacity reaches up to 12.36 mAh cm−2. This work provides some useful insights for the design of high-performance SACs for Li-S batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI