A Secure and Fair Federated Learning Framework Based on Consensus Incentive Mechanism

激励 机制(生物学) 计算机科学 微观经济学 经济 认识论 哲学
作者
Feng Zhu,Feng Hu,Yanchao Zhao,Bing Chen,Xiaoyang Tan
出处
期刊:Mathematics [Multidisciplinary Digital Publishing Institute]
卷期号:12 (19): 3068-3068
标识
DOI:10.3390/math12193068
摘要

Federated learning facilitates collaborative computation among multiple participants while safeguarding user privacy. However, current federated learning algorithms operate under the assumption that all participants are trustworthy and their systems are secure. Nonetheless, real-world scenarios present several challenges: (1) Malicious clients disrupt federated learning through model poisoning and data poisoning attacks. Although some research has proposed secure aggregation methods to address this issue, many methods have inherent limitations. (2) Clients may refuse or passively participate in the training process due to considerations of self-interest, and may even interfere with the training process due to competitive relationships. To overcome these obstacles, we have devised a reliable federated framework aimed at ensuring secure computing throughout the entirety of federated task processes. Initially, we propose a method for detecting malicious models to safeguard the integrity of model aggregation. Furthermore, we have proposed a fair contribution assessment method and awarded the right to write blocks to the creator of the optimal model, ensuring the active participation of participants in both local training and model aggregation. Finally, we establish a computational framework grounded in blockchain and smart contracts to uphold the integrity and fairness of federated tasks. To assess the efficacy of our framework, we conduct simulations involving various types of client attacks and contribution assessment scenarios using multiple open-source datasets. Results from these experiments demonstrate that our framework effectively ensures the credibility of federated tasks while achieving impartial evaluation of client contributions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风语发布了新的文献求助10
刚刚
2秒前
hyh发布了新的文献求助10
2秒前
3秒前
h丶小虫完成签到,获得积分10
4秒前
8秒前
8秒前
8秒前
9秒前
光亮的天真完成签到 ,获得积分10
10秒前
10秒前
科研通AI5应助复活的军团采纳,获得30
11秒前
丁牛青发布了新的文献求助10
12秒前
shacodow发布了新的文献求助10
13秒前
15秒前
宇心完成签到,获得积分10
15秒前
代小葵完成签到,获得积分10
18秒前
19秒前
科研通AI5应助妩媚采纳,获得10
20秒前
是容与呀完成签到,获得积分10
20秒前
xiaokang123应助UGO采纳,获得10
23秒前
刻苦的白梅完成签到,获得积分10
23秒前
Wei完成签到,获得积分10
23秒前
24秒前
Mojito发布了新的文献求助10
24秒前
24秒前
西原的橙果完成签到,获得积分10
26秒前
Rookie完成签到 ,获得积分10
27秒前
JamesPei应助大利采纳,获得10
27秒前
王文豪发布了新的文献求助10
28秒前
羞涩的曼凡完成签到,获得积分10
29秒前
FloppyWow发布了新的文献求助10
29秒前
长情半邪完成签到 ,获得积分10
30秒前
领导范儿应助MRM采纳,获得10
30秒前
eli完成签到,获得积分10
30秒前
32秒前
闪闪的妙竹给闪闪的妙竹的求助进行了留言
32秒前
32秒前
陈龙完成签到,获得积分10
32秒前
35秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672461
求助须知:如何正确求助?哪些是违规求助? 3228752
关于积分的说明 9781866
捐赠科研通 2939164
什么是DOI,文献DOI怎么找? 1610648
邀请新用户注册赠送积分活动 760696
科研通“疑难数据库(出版商)”最低求助积分说明 736174