Computer-Aided Retrosynthesis for Greener and Optimal Total Synthesis of a Helicase-Primase Inhibitor Active Pharmaceutical Ingredient

初级 成分 活性成分 解旋酶 化学 食品科学 生物 药理学 生物化学 逆转录酶 核糖核酸 基因
作者
Rodolfo I. Teixeira,Michael Andresini,Renzo Luisi,Brahim Benyahia
出处
期刊:JACS Au [American Chemical Society]
卷期号:4 (11): 4263-4272 被引量:1
标识
DOI:10.1021/jacsau.4c00624
摘要

This study leverages and upgrades the capabilities of computer-aided retrosynthesis (CAR) in the systematic development of greener and more efficient total synthetic routes for the active pharmaceutical ingredient (API) IM-204, a helicase-primase inhibitor that demonstrated enhanced efficacy against Herpes simplex virus (HSV) infections. Using various CAR tools, several total synthetic routes were uncovered, evaluated, and experimentally validated, with the goal to maximize selectivity and yield and minimize the environmental impact. The CAR tools revealed several synthetic options under different constraints, which can overperform the patented synthetic route used as a reference. The selected CAR-based route demonstrated a significant improvement of the total yield from 8% (patented route) to 26%, along with a moderate improvement in the overall green performance. It was also shown that a human-in-the-loop approach can be synergistically combined with CAR to drive further improvements and deliver greener synthetic alternatives. This strategy further enhanced the green metrics by substituting solvents and merging two steps into one. These changes led to a significant improvement in the overall yield of IM-204 synthesis from 8 to 35%. Additionally, the green performance score, based on the GreenMotion metrics, was improved from 0 to 18, and the total cost of the building blocks was reduced by 550-fold. This work demonstrates the potential of CAR in drug development, highlighting its capacity to streamline synthesis processes, reduce environmental footprint, and lower production costs, thereby advancing the field toward more efficient and sustainable practices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
黄bb给黄bb的求助进行了留言
1秒前
科研通AI5应助chentle采纳,获得10
5秒前
司康完成签到,获得积分10
7秒前
8秒前
von完成签到,获得积分10
8秒前
8秒前
奥利奥爱好者完成签到,获得积分10
8秒前
Wiesen完成签到,获得积分10
9秒前
glj发布了新的文献求助10
9秒前
yu完成签到 ,获得积分10
12秒前
14秒前
15秒前
科研通AI5应助于于于采纳,获得10
16秒前
许一完成签到,获得积分10
18秒前
tangtang发布了新的文献求助10
18秒前
轩辕断天发布了新的文献求助10
19秒前
20秒前
roll完成签到,获得积分10
21秒前
24秒前
25秒前
希望天下0贩的0应助hihi采纳,获得10
28秒前
xiaomili发布了新的文献求助10
28秒前
Scheduling完成签到 ,获得积分10
30秒前
30秒前
Fox完成签到 ,获得积分10
30秒前
LX77bx完成签到,获得积分10
30秒前
顾矜应助allucky采纳,获得10
31秒前
可爱的函函应助tangtang采纳,获得10
31秒前
智者完成签到,获得积分10
32秒前
33秒前
34秒前
笑笑发布了新的文献求助10
35秒前
HC完成签到,获得积分10
38秒前
cyz发布了新的文献求助10
39秒前
xiaolang2004完成签到,获得积分10
39秒前
阿德里亚诺完成签到,获得积分10
39秒前
bkagyin应助科研通管家采纳,获得10
40秒前
赘婿应助科研通管家采纳,获得10
40秒前
Owen应助科研通管家采纳,获得10
40秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735888
求助须知:如何正确求助?哪些是违规求助? 3279592
关于积分的说明 10016230
捐赠科研通 2996269
什么是DOI,文献DOI怎么找? 1644011
邀请新用户注册赠送积分活动 781681
科研通“疑难数据库(出版商)”最低求助积分说明 749425