Highly efficient organic solar cells enabled by suppressing triplet exciton formation and non-radiative recombination

重组 激子 辐射传输 有机太阳能电池 自发辐射 光电子学 物理 化学物理 材料科学 化学 光学 凝聚态物理 激光器 生物化学 核磁共振 聚合物 基因
作者
Congqi Li,Yao Guo,Xiaobin Gu,Jikai Lv,Yuqi Hou,Qijie Lin,Na Yu,Misbah Sehar Abbasi,Xin Zhang,Jianqi Zhang,Zheng Tang,Qian Peng,Chunfeng Zhang,Yunhao Cai,Hui Huang
出处
期刊:Nature Communications [Springer Nature]
卷期号:15 (1) 被引量:12
标识
DOI:10.1038/s41467-024-53286-2
摘要

The high non-radiative energy loss is a bottleneck issue that impedes the improvement of organic solar cells. The formation of triplet exciton is thought to be the main source of the large non-radiative energy loss. Decreasing the rate of back charge transfer is considered as an effective approach to alleviate the relaxation of the charge-transfer state and the triplet exciton generation. Herein, we develops an efficient ternary system based on D18:N3-BO:F-BTA3 by regulating the charge-transfer state disorder and the rate of back charge transfer of the blend. With the addition of F-BTA3, a well-defined morphology with a more condensed molecular packing is obtained. Moreover, a reduced charge-transfer state disorder is demonstrated in the ternary blend, which decreases the rate of back charge transfer as well as the triplet exciton formation, and therefore hinders the non-radiative recombination pathways. Consequently, D18:N3-BO:F-BTA3-based device produces a low non-radiative energy loss of 0.183 eV and a record-high efficiency of 20.25%. This work not only points towards the significant role of the charge-transfer state disorder on the suppression of triplet exciton formation and the non-radiative energy loss, but also provides a valuable insight for enhancing the performance of OSCs. The high non-radiative energy loss is a bottleneck issue for efficient organic solar cells. Here, the authors regulate the charge transfer state disorder and rate of back charge transfer through a ternary system, achieving low non-radiative energy loss of 0.183 eV and device efficiency of 20.25%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Accept2024完成签到,获得积分10
1秒前
万能图书馆应助笑笑采纳,获得10
1秒前
伊丽莎白居易完成签到,获得积分10
2秒前
鳗鱼静珊发布了新的文献求助10
2秒前
yuyiyi完成签到,获得积分10
3秒前
无花果应助胖豆采纳,获得10
4秒前
通~发布了新的文献求助10
4秒前
cc发布了新的文献求助10
5秒前
6秒前
MILL发布了新的文献求助10
6秒前
月光入梦完成签到 ,获得积分10
7秒前
HC完成签到,获得积分10
8秒前
琪琪发布了新的文献求助10
8秒前
9秒前
淡定的思松应助风的季节采纳,获得10
10秒前
所所应助mm采纳,获得10
10秒前
11秒前
荒年完成签到,获得积分10
11秒前
魁梧的曼凡完成签到,获得积分10
11秒前
12秒前
研一小刘发布了新的文献求助10
12秒前
陈莹完成签到,获得积分20
12秒前
qi发布了新的文献求助30
13秒前
13秒前
Wyan完成签到,获得积分20
13秒前
我是老大应助通~采纳,获得10
14秒前
Jenny应助淡定紫菱采纳,获得10
14秒前
逆流的鱼完成签到 ,获得积分10
15秒前
15秒前
liuqian完成签到,获得积分10
16秒前
Hou完成签到 ,获得积分10
16秒前
反杀闰土的猹完成签到 ,获得积分20
16秒前
所所应助cc采纳,获得10
17秒前
邵裘完成签到,获得积分10
17秒前
丘比特应助yin采纳,获得10
17秒前
18秒前
18秒前
18秒前
希望天下0贩的0应助sss采纳,获得20
18秒前
拼搏向前发布了新的文献求助10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794