Highly efficient organic solar cells enabled by suppressing triplet exciton formation and non-radiative recombination

重组 激子 辐射传输 有机太阳能电池 自发辐射 光电子学 物理 化学物理 材料科学 化学 光学 凝聚态物理 激光器 生物化学 核磁共振 聚合物 基因
作者
Congqi Li,Yao Guo,Xiaobin Gu,Jikai Lv,Yuqi Hou,Qijie Lin,Na Yu,Misbah Sehar Abbasi,Xin Zhang,Jianqi Zhang,Zheng Tang,Qian Peng,Chunfeng Zhang,Yunhao Cai,Hui Huang
出处
期刊:Nature Communications [Nature Portfolio]
卷期号:15 (1) 被引量:12
标识
DOI:10.1038/s41467-024-53286-2
摘要

The high non-radiative energy loss is a bottleneck issue that impedes the improvement of organic solar cells. The formation of triplet exciton is thought to be the main source of the large non-radiative energy loss. Decreasing the rate of back charge transfer is considered as an effective approach to alleviate the relaxation of the charge-transfer state and the triplet exciton generation. Herein, we develops an efficient ternary system based on D18:N3-BO:F-BTA3 by regulating the charge-transfer state disorder and the rate of back charge transfer of the blend. With the addition of F-BTA3, a well-defined morphology with a more condensed molecular packing is obtained. Moreover, a reduced charge-transfer state disorder is demonstrated in the ternary blend, which decreases the rate of back charge transfer as well as the triplet exciton formation, and therefore hinders the non-radiative recombination pathways. Consequently, D18:N3-BO:F-BTA3-based device produces a low non-radiative energy loss of 0.183 eV and a record-high efficiency of 20.25%. This work not only points towards the significant role of the charge-transfer state disorder on the suppression of triplet exciton formation and the non-radiative energy loss, but also provides a valuable insight for enhancing the performance of OSCs. The high non-radiative energy loss is a bottleneck issue for efficient organic solar cells. Here, the authors regulate the charge transfer state disorder and rate of back charge transfer through a ternary system, achieving low non-radiative energy loss of 0.183 eV and device efficiency of 20.25%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡小屁发布了新的文献求助20
刚刚
刚刚
小马甲应助cxd采纳,获得10
刚刚
bkagyin应助啊娴子采纳,获得10
刚刚
1秒前
踏实的12发布了新的文献求助10
1秒前
科研通AI5应助kb采纳,获得10
1秒前
方远锋完成签到,获得积分10
1秒前
1秒前
NexusExplorer应助樂酉采纳,获得10
2秒前
冲冲小将完成签到,获得积分10
2秒前
陈增飞发布了新的文献求助10
3秒前
何小抽完成签到,获得积分20
3秒前
天天快乐应助跳跃的水蓝采纳,获得10
3秒前
晨屿发布了新的文献求助10
4秒前
踏实无敌应助晓生采纳,获得10
4秒前
赘婿应助无限的依波采纳,获得10
4秒前
4秒前
科研通AI5应助赵鹏彦采纳,获得10
5秒前
wangjq发布了新的文献求助10
5秒前
5秒前
科研通AI5应助美好钻石采纳,获得10
6秒前
漾漾的羊完成签到,获得积分10
6秒前
酷酷珠发布了新的文献求助10
6秒前
6秒前
李爱国应助开心小霸王采纳,获得10
7秒前
7秒前
搜集达人应助牛大壮采纳,获得10
8秒前
Jasper应助long采纳,获得30
9秒前
顺利完成签到,获得积分10
9秒前
充电宝应助菜鸟采纳,获得10
9秒前
9秒前
9秒前
9秒前
10秒前
10秒前
11秒前
TRY完成签到,获得积分10
11秒前
jiajiajiamin发布了新的文献求助10
11秒前
慕青应助Vvvnnnaa1采纳,获得10
11秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3747956
求助须知:如何正确求助?哪些是违规求助? 3290798
关于积分的说明 10070954
捐赠科研通 3006696
什么是DOI,文献DOI怎么找? 1651241
邀请新用户注册赠送积分活动 786287
科研通“疑难数据库(出版商)”最低求助积分说明 751627