Modeling of Nanomaterials for Supercapacitors: Beyond Carbon Electrodes

假电容器 超级电容器 纳米技术 材料科学 纳米孔 表征(材料科学) 计算机科学 电极 电容 化学 物理化学
作者
Sheng Bi,Lisanne Knijff,Xiliang Lian,Alicia van Hees,Chao Zhang,Mathieu Salanne
出处
期刊:ACS Nano [American Chemical Society]
卷期号:18 (31): 19931-19949 被引量:9
标识
DOI:10.1021/acsnano.4c01787
摘要

Capacitive storage devices allow for fast charge and discharge cycles, making them the perfect complements to batteries for high power applications. Many materials display interesting capacitive properties when they are put in contact with ionic solutions despite their very different structures and (surface) reactivity. Among them, nanocarbons are the most important for practical applications, but many nanomaterials have recently emerged, such as conductive metal-organic frameworks, 2D materials, and a wide variety of metal oxides. These heterogeneous and complex electrode materials are difficult to model with conventional approaches. However, the development of computational methods, the incorporation of machine learning techniques, and the increasing power in high performance computing now allow us to tackle these types of systems. In this Review, we summarize the current efforts in this direction. We show that depending on the nature of the materials and of the charging mechanisms, different methods, or combinations of them, can provide desirable atomic-scale insight on the interactions at play. We mainly focus on two important aspects: (i) the study of ion adsorption in complex nanoporous materials, which require the extension of constant potential molecular dynamics to multicomponent systems, and (ii) the characterization of Faradaic processes in pseudocapacitors, that involves the use of electronic structure-based methods. We also discuss how recently developed simulation methods will allow bridges to be made between double-layer capacitors and pseudocapacitors for future high power electricity storage devices.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
1秒前
1秒前
Kia发布了新的文献求助30
1秒前
GUKGO完成签到,获得积分10
2秒前
limerence完成签到,获得积分10
2秒前
汉堡包应助风轩轩采纳,获得10
2秒前
林深时见鹿完成签到,获得积分10
2秒前
2秒前
13发布了新的文献求助30
3秒前
3秒前
orixero应助清爽朋友采纳,获得10
3秒前
凡人完成签到,获得积分10
4秒前
爆米花应助坚强水杯采纳,获得100
4秒前
shenyanlei发布了新的文献求助10
4秒前
欢喜大地发布了新的文献求助10
4秒前
Spencer发布了新的文献求助30
4秒前
随便发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
DTS发布了新的文献求助10
7秒前
7秒前
1851611453完成签到 ,获得积分10
8秒前
刘丰铭发布了新的文献求助10
8秒前
SciGPT应助jhonnyhuang采纳,获得10
8秒前
8秒前
10秒前
sunshine完成签到,获得积分10
10秒前
风清扬发布了新的文献求助10
10秒前
科研通AI6应助结实的栾采纳,获得10
10秒前
AskNature完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
13完成签到,获得积分20
11秒前
12秒前
12秒前
358489228发布了新的文献求助10
12秒前
Xiao完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608256
求助须知:如何正确求助?哪些是违规求助? 4692810
关于积分的说明 14875754
捐赠科研通 4717042
什么是DOI,文献DOI怎么找? 2544147
邀请新用户注册赠送积分活动 1509105
关于科研通互助平台的介绍 1472802