Strain-Engineered Quasiparticle Band Structure and Electron–Hole Excitation in Hittorf’s Phosphorene for Efficient Photon-to-Electricity Conversion

磷烯 准粒子 拉伤 激发 光子 带隙 电子 双光子激发显微术 材料科学 物理 原子物理学 凝聚态物理 光学 量子力学 医学 超导电性 内科学
作者
Xuewu Wang,Tian-Xiang Qian,Ju Zhou,Chenglin Wang,Yifan Ding,Tianyi Cai,Sheng Ju
出处
期刊:ACS applied nano materials [American Chemical Society]
卷期号:7 (15): 17451-17459
标识
DOI:10.1021/acsanm.4c02544
摘要

Exciton-driven strong light–matter interactions in two-dimensional materials have displayed their advantages in applications in optoelectronics and photonics. However, the large exciton binding energy prohibits the efficient separation of photoexcited electron–hole pairs and is unfavorable for the application of photoelectrics and photovoltaics. Here, based on density-functional theory with the many-body perturbation method, we study the evolution of quasiparticle band structure, exciton, and optical properties with biaxial strain in 2D Hittorf's phosphorene. The pristine and +1% strained Hittorf's phosphorene are direct-band-gap semiconductors with the valence band maximal and the conduction band minimal located at the X point. When strain is approaching +2%, the conduction band minimal changes from the X point to the Γ point, resulting in a transition to the indirect band gap. This kind of indirect band gap persists to +5%. For the optical gap, we observe a modulation threshold of 0.33 eV over a +5% strain range. It is revealed that a p–n junction with efficient electron–hole excitation and separation is naturally formed in inhomogeneously strained 2D membrane. The transition from direct-band-gap to indirect-band-gap semiconductor, the strongly enhanced exciton lifetime, and the spatial separation of photoexcited electron–hole pairs under a moderate electric field will further inhibit the recombination. Together with the efficient visible light absorption which guarantees the absorption of solar spectra, these findings provide an effective avenue toward solar energy harvesting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文文完成签到 ,获得积分10
1秒前
Singularity应助魔幻的毛巾采纳,获得20
2秒前
4秒前
nihaoxiaoai完成签到,获得积分10
4秒前
小蘑菇应助浓缩蓝鲸采纳,获得10
6秒前
没名字完成签到,获得积分10
6秒前
ouyang发布了新的文献求助10
11秒前
12秒前
13秒前
小蘑菇应助a1441949575采纳,获得10
15秒前
zxt发布了新的文献求助10
16秒前
响铃发布了新的文献求助10
18秒前
唯心止论完成签到,获得积分10
20秒前
21秒前
独特的半芹完成签到,获得积分10
23秒前
24秒前
xx发布了新的文献求助10
25秒前
屿安完成签到,获得积分10
25秒前
bkagyin应助科研通管家采纳,获得10
26秒前
26秒前
Orange应助科研通管家采纳,获得10
26秒前
香蕉觅云应助科研通管家采纳,获得10
26秒前
响铃完成签到,获得积分20
26秒前
26秒前
无花果应助科研通管家采纳,获得10
26秒前
轻松诗霜完成签到 ,获得积分10
26秒前
唯心止论发布了新的文献求助10
29秒前
jijijibibibi发布了新的文献求助10
31秒前
a1441949575发布了新的文献求助10
31秒前
00gi发布了新的文献求助10
32秒前
xx完成签到,获得积分10
32秒前
小学生的练习簿完成签到,获得积分10
34秒前
星辰大海应助聪大大采纳,获得10
37秒前
深情安青应助健忘雁梅采纳,获得10
40秒前
Tetmqq应助xx采纳,获得10
40秒前
hieveryone发布了新的文献求助120
41秒前
43秒前
@你发布了新的文献求助10
44秒前
甜蜜的水壶完成签到,获得积分10
44秒前
44秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Generative AI in Higher Education 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3354397
求助须知:如何正确求助?哪些是违规求助? 2978734
关于积分的说明 8687429
捐赠科研通 2660357
什么是DOI,文献DOI怎么找? 1456611
科研通“疑难数据库(出版商)”最低求助积分说明 674417
邀请新用户注册赠送积分活动 665279