Quantitative assessment of machine learning reliability and resilience

计算机科学 稳健性(进化) 协变量 弹性(材料科学) 可靠性工程 可靠性(半导体) 机器学习 背景(考古学) 软件 人工智能 数据挖掘 工程类 物理 功率(物理) 量子力学 古生物学 生物化学 化学 生物 基因 程序设计语言 热力学
作者
Zakaria Faddi,Karen da Mata,Priscila Silva,Vidhyashree Nagaraju,Susmita Ghosh,Gökhan Kul,Lance Fiondella
出处
期刊:Risk Analysis [Wiley]
被引量:1
标识
DOI:10.1111/risa.14666
摘要

Advances in machine learning (ML) have led to applications in safety-critical domains, including security, defense, and healthcare. These ML models are confronted with dynamically changing and actively hostile conditions characteristic of real-world applications, requiring systems incorporating ML to be reliable and resilient. Many studies propose techniques to improve the robustness of ML algorithms. However, fewer consider quantitative techniques to assess changes in the reliability and resilience of these systems over time. To address this gap, this study demonstrates how to collect relevant data during the training and testing of ML suitable for the application of software reliability, with and without covariates, and resilience models and the subsequent interpretation of these analyses. The proposed approach promotes quantitative risk assessment of ML technologies, providing the ability to track and predict degradation and improvement in the ML model performance and assisting ML and system engineers with an objective approach to compare the relative effectiveness of alternative training and testing methods. The approach is illustrated in the context of an image recognition model, which is subjected to two generative adversarial attacks and then iteratively retrained to improve the system's performance. Our results indicate that software reliability models incorporating covariates characterized the misclassification discovery process more accurately than models without covariates. Moreover, the resilience model based on multiple linear regression incorporating interactions between covariates tracks and predicts degradation and recovery of performance best. Thus, software reliability and resilience models offer rigorous quantitative assurance methods for ML-enabled systems and processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
RY完成签到,获得积分10
2秒前
无限的珠完成签到,获得积分10
2秒前
无奈冥完成签到,获得积分10
2秒前
今后应助Justin采纳,获得10
3秒前
3秒前
ding应助科研通管家采纳,获得10
4秒前
烟花应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
ED应助科研通管家采纳,获得10
4秒前
4秒前
pluto应助科研通管家采纳,获得10
4秒前
卡卡西应助科研通管家采纳,获得30
4秒前
我是老大应助科研通管家采纳,获得10
4秒前
小胖完成签到 ,获得积分10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
yookia应助科研通管家采纳,获得10
4秒前
LYY发布了新的文献求助10
4秒前
t通应助科研通管家采纳,获得10
4秒前
卡卡西应助科研通管家采纳,获得30
4秒前
6秒前
慕青应助博修采纳,获得30
7秒前
汕头凯奇发布了新的文献求助10
7秒前
binshier完成签到,获得积分10
7秒前
9秒前
df完成签到 ,获得积分10
10秒前
卡酷发布了新的文献求助10
10秒前
12秒前
果实发布了新的文献求助10
12秒前
15秒前
16秒前
熊i发布了新的文献求助10
17秒前
17秒前
17秒前
18秒前
19秒前
请假了发布了新的文献求助10
21秒前
lalala发布了新的文献求助10
21秒前
传奇3应助天真忆文采纳,获得10
22秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960985
求助须知:如何正确求助?哪些是违规求助? 3507215
关于积分的说明 11134512
捐赠科研通 3239640
什么是DOI,文献DOI怎么找? 1790273
邀请新用户注册赠送积分活动 872328
科研通“疑难数据库(出版商)”最低求助积分说明 803149