Quantitative assessment of machine learning reliability and resilience

计算机科学 稳健性(进化) 协变量 弹性(材料科学) 可靠性工程 可靠性(半导体) 机器学习 背景(考古学) 软件 人工智能 数据挖掘 工程类 物理 功率(物理) 量子力学 古生物学 生物化学 化学 生物 基因 程序设计语言 热力学
作者
Zakaria Faddi,Karen da Mata,Priscila Silva,Vidhyashree Nagaraju,Susmita Ghosh,Gökhan Kul,Lance Fiondella
出处
期刊:Risk Analysis [Wiley]
被引量:1
标识
DOI:10.1111/risa.14666
摘要

Advances in machine learning (ML) have led to applications in safety-critical domains, including security, defense, and healthcare. These ML models are confronted with dynamically changing and actively hostile conditions characteristic of real-world applications, requiring systems incorporating ML to be reliable and resilient. Many studies propose techniques to improve the robustness of ML algorithms. However, fewer consider quantitative techniques to assess changes in the reliability and resilience of these systems over time. To address this gap, this study demonstrates how to collect relevant data during the training and testing of ML suitable for the application of software reliability, with and without covariates, and resilience models and the subsequent interpretation of these analyses. The proposed approach promotes quantitative risk assessment of ML technologies, providing the ability to track and predict degradation and improvement in the ML model performance and assisting ML and system engineers with an objective approach to compare the relative effectiveness of alternative training and testing methods. The approach is illustrated in the context of an image recognition model, which is subjected to two generative adversarial attacks and then iteratively retrained to improve the system's performance. Our results indicate that software reliability models incorporating covariates characterized the misclassification discovery process more accurately than models without covariates. Moreover, the resilience model based on multiple linear regression incorporating interactions between covariates tracks and predicts degradation and recovery of performance best. Thus, software reliability and resilience models offer rigorous quantitative assurance methods for ML-enabled systems and processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓝雨发布了新的文献求助10
刚刚
隐形曼青应助aaa采纳,获得10
2秒前
2秒前
领导范儿应助zzzkyt采纳,获得10
2秒前
2秒前
asdfg应助fff采纳,获得10
3秒前
深情安青应助乌禅采纳,获得10
4秒前
田様应助小蒋采纳,获得10
5秒前
兔兔不睡觉完成签到 ,获得积分10
6秒前
窝瓜顶呱呱完成签到,获得积分10
7秒前
777完成签到,获得积分10
8秒前
能量球发布了新的文献求助10
9秒前
9秒前
华仔应助科研通管家采纳,获得10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
邓佳鑫Alan应助科研通管家采纳,获得10
10秒前
邓佳鑫Alan应助科研通管家采纳,获得10
10秒前
Jasper应助科研通管家采纳,获得10
10秒前
邓佳鑫Alan应助科研通管家采纳,获得10
10秒前
完美世界应助科研通管家采纳,获得10
10秒前
Akim应助科研通管家采纳,获得10
10秒前
10秒前
打打应助科研通管家采纳,获得10
10秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
Hello应助做实验的林黛玉采纳,获得10
13秒前
zzzkyt发布了新的文献求助10
14秒前
14秒前
爆米花应助tynuxu采纳,获得10
16秒前
伊凡完成签到,获得积分10
18秒前
轻松小之发布了新的文献求助10
18秒前
兔兔要睡觉完成签到 ,获得积分10
18秒前
18秒前
sdx000126完成签到,获得积分10
18秒前
Specification应助鲜橙采纳,获得10
20秒前
小蒋发布了新的文献求助10
20秒前
赵赵完成签到,获得积分10
21秒前
甜兰儿完成签到,获得积分10
22秒前
大力的芹发布了新的文献求助10
22秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Analytical Model of Threshold Voltage for Narrow Width Metal Oxide Semiconductor Field Effect Transistors 350
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310425
求助须知:如何正确求助?哪些是违规求助? 2943334
关于积分的说明 8513915
捐赠科研通 2618566
什么是DOI,文献DOI怎么找? 1431182
科研通“疑难数据库(出版商)”最低求助积分说明 664398
邀请新用户注册赠送积分活动 649599