Development and validation of a CT-based model for noninvasive prediction of T stage in gastric cancer: A multicenter study (Preprint)

无线电技术 阶段(地层学) 人工智能 深度学习 机器学习 医学 癌症 计算机科学 内科学 古生物学 生物
作者
Tao Jin,Dan Liu,Fubi Hu,Xiao Zhang,Hongkun Yin,Huiling Zhang,Kai Zhang,Zixing Huang,Kun Yang
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:26: e56851-e56851 被引量:2
标识
DOI:10.2196/56851
摘要

Background As part of the TNM (tumor-node-metastasis) staging system, T staging based on tumor depth is crucial for developing treatment plans. Previous studies have constructed a deep learning model based on computed tomographic (CT) radiomic signatures to predict the number of lymph node metastases and survival in patients with resected gastric cancer (GC). However, few studies have reported the combination of deep learning and radiomics in predicting T staging in GC. Objective This study aimed to develop a CT-based model for automatic prediction of the T stage of GC via radiomics and deep learning. Methods A total of 771 GC patients from 3 centers were retrospectively enrolled and divided into training, validation, and testing cohorts. Patients with GC were classified into mild (stage T1 and T2), moderate (stage T3), and severe (stage T4) groups. Three predictive models based on the labeled CT images were constructed using the radiomics features (radiomics model), deep features (deep learning model), and a combination of both (hybrid model). Results The overall classification accuracy of the radiomics model was 64.3% in the internal testing data set. The deep learning model and hybrid model showed better performance than the radiomics model, with overall classification accuracies of 75.7% (P=.04) and 81.4% (P=.001), respectively. On the subtasks of binary classification of tumor severity, the areas under the curve of the radiomics, deep learning, and hybrid models were 0.875, 0.866, and 0.886 in the internal testing data set and 0.820, 0.818, and 0.972 in the external testing data set, respectively, for differentiating mild (stage T1~T2) from nonmild (stage T3~T4) patients, and were 0.815, 0.892, and 0.894 in the internal testing data set and 0.685, 0.808, and 0.897 in the external testing data set, respectively, for differentiating nonsevere (stage T1~T3) from severe (stage T4) patients. Conclusions The hybrid model integrating radiomics features and deep features showed favorable performance in diagnosing the pathological stage of GC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI6应助典雅的俊驰采纳,获得10
3秒前
Joins_Su完成签到 ,获得积分10
4秒前
金金完成签到 ,获得积分10
5秒前
6秒前
烂漫的凡波完成签到,获得积分10
6秒前
6秒前
7秒前
Summer完成签到 ,获得积分10
10秒前
hhh完成签到,获得积分10
10秒前
邪恶发布了新的文献求助10
10秒前
10秒前
12秒前
孙某人发布了新的文献求助30
12秒前
大个应助热心幻天采纳,获得10
13秒前
13秒前
enjoy完成签到 ,获得积分10
15秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
19秒前
张俊扬完成签到,获得积分10
19秒前
20秒前
20秒前
NexusExplorer应助辛勤电灯胆采纳,获得10
20秒前
de关注了科研通微信公众号
22秒前
思源应助wuxunxun2015采纳,获得10
22秒前
张俊扬发布了新的文献求助10
23秒前
24秒前
25秒前
潇洒愚志发布了新的文献求助10
25秒前
热心幻天发布了新的文献求助10
28秒前
清秀谷南发布了新的文献求助10
30秒前
30秒前
满意的甜瓜完成签到,获得积分10
30秒前
打打应助夕子爱科研采纳,获得10
30秒前
科研通AI6应助妥妥采纳,获得10
31秒前
从容凝安完成签到,获得积分10
31秒前
张旭完成签到,获得积分10
32秒前
潇洒愚志完成签到,获得积分10
32秒前
Xcd完成签到 ,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5613310
求助须知:如何正确求助?哪些是违规求助? 4698482
关于积分的说明 14898087
捐赠科研通 4735844
什么是DOI,文献DOI怎么找? 2546985
邀请新用户注册赠送积分活动 1510961
关于科研通互助平台的介绍 1473545