清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Development and validation of a CT-based model for noninvasive prediction of T stage in gastric cancer: A multicenter study (Preprint)

无线电技术 阶段(地层学) 人工智能 深度学习 机器学习 医学 癌症 计算机科学 内科学 古生物学 生物
作者
Tao Jin,Dan Liu,Fubi Hu,Xiao Zhang,Hongkun Yin,Huiling Zhang,Kai Zhang,Zixing Huang,Kun Yang
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:26: e56851-e56851 被引量:2
标识
DOI:10.2196/56851
摘要

Background As part of the TNM (tumor-node-metastasis) staging system, T staging based on tumor depth is crucial for developing treatment plans. Previous studies have constructed a deep learning model based on computed tomographic (CT) radiomic signatures to predict the number of lymph node metastases and survival in patients with resected gastric cancer (GC). However, few studies have reported the combination of deep learning and radiomics in predicting T staging in GC. Objective This study aimed to develop a CT-based model for automatic prediction of the T stage of GC via radiomics and deep learning. Methods A total of 771 GC patients from 3 centers were retrospectively enrolled and divided into training, validation, and testing cohorts. Patients with GC were classified into mild (stage T1 and T2), moderate (stage T3), and severe (stage T4) groups. Three predictive models based on the labeled CT images were constructed using the radiomics features (radiomics model), deep features (deep learning model), and a combination of both (hybrid model). Results The overall classification accuracy of the radiomics model was 64.3% in the internal testing data set. The deep learning model and hybrid model showed better performance than the radiomics model, with overall classification accuracies of 75.7% (P=.04) and 81.4% (P=.001), respectively. On the subtasks of binary classification of tumor severity, the areas under the curve of the radiomics, deep learning, and hybrid models were 0.875, 0.866, and 0.886 in the internal testing data set and 0.820, 0.818, and 0.972 in the external testing data set, respectively, for differentiating mild (stage T1~T2) from nonmild (stage T3~T4) patients, and were 0.815, 0.892, and 0.894 in the internal testing data set and 0.685, 0.808, and 0.897 in the external testing data set, respectively, for differentiating nonsevere (stage T1~T3) from severe (stage T4) patients. Conclusions The hybrid model integrating radiomics features and deep features showed favorable performance in diagnosing the pathological stage of GC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
crystaler完成签到 ,获得积分10
3秒前
王世卉完成签到,获得积分10
8秒前
秋夜临完成签到,获得积分0
9秒前
舒心宛发布了新的文献求助10
10秒前
10秒前
胡图图完成签到 ,获得积分10
29秒前
管靖易完成签到 ,获得积分10
32秒前
Son4904完成签到,获得积分10
34秒前
grace完成签到 ,获得积分10
40秒前
王饱饱完成签到 ,获得积分10
46秒前
睡不醒完成签到,获得积分10
1分钟前
呆萌滑板完成签到 ,获得积分10
1分钟前
追梦完成签到,获得积分10
1分钟前
科目三应助科研通管家采纳,获得30
1分钟前
科目三应助科研通管家采纳,获得10
1分钟前
安心完成签到 ,获得积分10
2分钟前
白嫖论文完成签到 ,获得积分10
2分钟前
ramsey33完成签到 ,获得积分10
2分钟前
大大大忽悠完成签到 ,获得积分10
2分钟前
小燕子完成签到 ,获得积分10
2分钟前
招财进宝宝完成签到 ,获得积分10
2分钟前
酷酷的紫南完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
qiongqiong完成签到 ,获得积分10
2分钟前
sevenhill完成签到 ,获得积分10
2分钟前
bo完成签到 ,获得积分10
2分钟前
kevin完成签到 ,获得积分10
2分钟前
光亮若翠完成签到,获得积分10
2分钟前
清脆如娆完成签到 ,获得积分10
3分钟前
Kk发布了新的文献求助10
3分钟前
Will完成签到,获得积分10
3分钟前
南宫秃完成签到,获得积分0
3分钟前
荣浩宇完成签到 ,获得积分10
3分钟前
朱光辉完成签到,获得积分10
3分钟前
aiyawy完成签到 ,获得积分10
4分钟前
lx完成签到,获得积分10
4分钟前
依然完成签到,获得积分10
4分钟前
4分钟前
丰富荧完成签到 ,获得积分10
4分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5450312
求助须知:如何正确求助?哪些是违规求助? 4558110
关于积分的说明 14265461
捐赠科研通 4481541
什么是DOI,文献DOI怎么找? 2454903
邀请新用户注册赠送积分活动 1445669
关于科研通互助平台的介绍 1421633