Development and validation of a CT-based model for noninvasive prediction of T stage in gastric cancer: A multicenter study (Preprint)

无线电技术 阶段(地层学) 人工智能 深度学习 机器学习 医学 癌症 计算机科学 内科学 古生物学 生物
作者
Tao Jin,Dan Liu,Fubi Hu,Xiao Zhang,Hongkun Yin,Huiling Zhang,Kai Zhang,Zixing Huang,Kun Yang
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:26: e56851-e56851 被引量:2
标识
DOI:10.2196/56851
摘要

Background As part of the TNM (tumor-node-metastasis) staging system, T staging based on tumor depth is crucial for developing treatment plans. Previous studies have constructed a deep learning model based on computed tomographic (CT) radiomic signatures to predict the number of lymph node metastases and survival in patients with resected gastric cancer (GC). However, few studies have reported the combination of deep learning and radiomics in predicting T staging in GC. Objective This study aimed to develop a CT-based model for automatic prediction of the T stage of GC via radiomics and deep learning. Methods A total of 771 GC patients from 3 centers were retrospectively enrolled and divided into training, validation, and testing cohorts. Patients with GC were classified into mild (stage T1 and T2), moderate (stage T3), and severe (stage T4) groups. Three predictive models based on the labeled CT images were constructed using the radiomics features (radiomics model), deep features (deep learning model), and a combination of both (hybrid model). Results The overall classification accuracy of the radiomics model was 64.3% in the internal testing data set. The deep learning model and hybrid model showed better performance than the radiomics model, with overall classification accuracies of 75.7% (P=.04) and 81.4% (P=.001), respectively. On the subtasks of binary classification of tumor severity, the areas under the curve of the radiomics, deep learning, and hybrid models were 0.875, 0.866, and 0.886 in the internal testing data set and 0.820, 0.818, and 0.972 in the external testing data set, respectively, for differentiating mild (stage T1~T2) from nonmild (stage T3~T4) patients, and were 0.815, 0.892, and 0.894 in the internal testing data set and 0.685, 0.808, and 0.897 in the external testing data set, respectively, for differentiating nonsevere (stage T1~T3) from severe (stage T4) patients. Conclusions The hybrid model integrating radiomics features and deep features showed favorable performance in diagnosing the pathological stage of GC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助xiaoju采纳,获得10
1秒前
Yunpeng Cai完成签到,获得积分10
1秒前
浮游应助沁晨采纳,获得10
1秒前
盒子先生完成签到,获得积分10
1秒前
Orange应助ll采纳,获得20
2秒前
PaoPao发布了新的文献求助10
2秒前
追逐的疯完成签到 ,获得积分10
2秒前
彬墩墩完成签到,获得积分10
2秒前
Loeop发布了新的文献求助10
2秒前
hahhhhhh2发布了新的文献求助10
3秒前
3秒前
保奔完成签到,获得积分10
3秒前
KK发布了新的文献求助10
4秒前
4秒前
太想毕业了完成签到,获得积分10
4秒前
5秒前
LIKO完成签到,获得积分10
5秒前
Judson发布了新的文献求助10
5秒前
yugy完成签到,获得积分10
6秒前
Zoe完成签到,获得积分10
6秒前
孤独的猎手完成签到,获得积分10
6秒前
小呆完成签到 ,获得积分10
6秒前
zonker完成签到,获得积分10
6秒前
水沐菁华完成签到,获得积分10
6秒前
6秒前
wxh完成签到 ,获得积分10
7秒前
科目三应助林洛沁采纳,获得10
8秒前
8秒前
细胞不凋王女士完成签到,获得积分10
8秒前
zc完成签到,获得积分10
8秒前
多看文献发布了新的文献求助10
8秒前
言希完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
852应助Loeop采纳,获得10
9秒前
H哈完成签到,获得积分10
9秒前
PaoPao完成签到,获得积分10
9秒前
ceeray23发布了新的文献求助30
10秒前
ll完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573758
求助须知:如何正确求助?哪些是违规求助? 4660031
关于积分的说明 14727408
捐赠科研通 4599888
什么是DOI,文献DOI怎么找? 2524520
邀请新用户注册赠送积分活动 1494877
关于科研通互助平台的介绍 1464977