Development and validation of a CT-based model for noninvasive prediction of T stage in gastric cancer: A multicenter study (Preprint)

无线电技术 阶段(地层学) 人工智能 深度学习 机器学习 医学 癌症 计算机科学 内科学 古生物学 生物
作者
Tao Jin,Dan Liu,Fubi Hu,Xiao Zhang,Hongkun Yin,Huiling Zhang,Kai Zhang,Zixing Huang,Kun Yang
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:26: e56851-e56851 被引量:2
标识
DOI:10.2196/56851
摘要

Background As part of the TNM (tumor-node-metastasis) staging system, T staging based on tumor depth is crucial for developing treatment plans. Previous studies have constructed a deep learning model based on computed tomographic (CT) radiomic signatures to predict the number of lymph node metastases and survival in patients with resected gastric cancer (GC). However, few studies have reported the combination of deep learning and radiomics in predicting T staging in GC. Objective This study aimed to develop a CT-based model for automatic prediction of the T stage of GC via radiomics and deep learning. Methods A total of 771 GC patients from 3 centers were retrospectively enrolled and divided into training, validation, and testing cohorts. Patients with GC were classified into mild (stage T1 and T2), moderate (stage T3), and severe (stage T4) groups. Three predictive models based on the labeled CT images were constructed using the radiomics features (radiomics model), deep features (deep learning model), and a combination of both (hybrid model). Results The overall classification accuracy of the radiomics model was 64.3% in the internal testing data set. The deep learning model and hybrid model showed better performance than the radiomics model, with overall classification accuracies of 75.7% (P=.04) and 81.4% (P=.001), respectively. On the subtasks of binary classification of tumor severity, the areas under the curve of the radiomics, deep learning, and hybrid models were 0.875, 0.866, and 0.886 in the internal testing data set and 0.820, 0.818, and 0.972 in the external testing data set, respectively, for differentiating mild (stage T1~T2) from nonmild (stage T3~T4) patients, and were 0.815, 0.892, and 0.894 in the internal testing data set and 0.685, 0.808, and 0.897 in the external testing data set, respectively, for differentiating nonsevere (stage T1~T3) from severe (stage T4) patients. Conclusions The hybrid model integrating radiomics features and deep features showed favorable performance in diagnosing the pathological stage of GC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
科目三应助song采纳,获得10
1秒前
整齐的忆彤完成签到,获得积分10
1秒前
2秒前
踏实的12发布了新的文献求助10
2秒前
mingming发布了新的文献求助10
2秒前
3秒前
小吴完成签到,获得积分20
3秒前
3秒前
5秒前
5秒前
xiaozhi发布了新的文献求助10
5秒前
这知识它不进脑汁啊完成签到,获得积分10
5秒前
5秒前
kyokukou完成签到,获得积分10
7秒前
小吴发布了新的文献求助30
8秒前
小栩发布了新的文献求助10
8秒前
duoduozs完成签到,获得积分10
8秒前
8秒前
9秒前
852应助有只小狗采纳,获得10
10秒前
科研通AI6应助Lliu采纳,获得10
10秒前
郑成灿发布了新的文献求助10
11秒前
11秒前
11秒前
Meyako应助正直敏采纳,获得10
11秒前
JYX完成签到 ,获得积分10
11秒前
科目三应助熙熙攘攘采纳,获得10
12秒前
111发布了新的文献求助30
12秒前
迷途发布了新的文献求助10
13秒前
13秒前
13秒前
Www发布了新的文献求助10
14秒前
14秒前
謃河鷺起完成签到,获得积分10
14秒前
司徒代云发布了新的文献求助10
15秒前
15秒前
可靠啤酒完成签到 ,获得积分10
16秒前
何永灿完成签到 ,获得积分10
16秒前
16秒前
16秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5501422
求助须知:如何正确求助?哪些是违规求助? 4597711
关于积分的说明 14460536
捐赠科研通 4531236
什么是DOI,文献DOI怎么找? 2483206
邀请新用户注册赠送积分活动 1466751
关于科研通互助平台的介绍 1439386