已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development and validation of a CT-based model for noninvasive prediction of T stage in gastric cancer: A multicenter study (Preprint)

无线电技术 阶段(地层学) 人工智能 深度学习 机器学习 医学 癌症 计算机科学 内科学 古生物学 生物
作者
Tao Jin,Dan Liu,Fubi Hu,Xiao Zhang,Hongkun Yin,Huiling Zhang,Kai Zhang,Zixing Huang,Kun Yang
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:26: e56851-e56851 被引量:2
标识
DOI:10.2196/56851
摘要

Background As part of the TNM (tumor-node-metastasis) staging system, T staging based on tumor depth is crucial for developing treatment plans. Previous studies have constructed a deep learning model based on computed tomographic (CT) radiomic signatures to predict the number of lymph node metastases and survival in patients with resected gastric cancer (GC). However, few studies have reported the combination of deep learning and radiomics in predicting T staging in GC. Objective This study aimed to develop a CT-based model for automatic prediction of the T stage of GC via radiomics and deep learning. Methods A total of 771 GC patients from 3 centers were retrospectively enrolled and divided into training, validation, and testing cohorts. Patients with GC were classified into mild (stage T1 and T2), moderate (stage T3), and severe (stage T4) groups. Three predictive models based on the labeled CT images were constructed using the radiomics features (radiomics model), deep features (deep learning model), and a combination of both (hybrid model). Results The overall classification accuracy of the radiomics model was 64.3% in the internal testing data set. The deep learning model and hybrid model showed better performance than the radiomics model, with overall classification accuracies of 75.7% (P=.04) and 81.4% (P=.001), respectively. On the subtasks of binary classification of tumor severity, the areas under the curve of the radiomics, deep learning, and hybrid models were 0.875, 0.866, and 0.886 in the internal testing data set and 0.820, 0.818, and 0.972 in the external testing data set, respectively, for differentiating mild (stage T1~T2) from nonmild (stage T3~T4) patients, and were 0.815, 0.892, and 0.894 in the internal testing data set and 0.685, 0.808, and 0.897 in the external testing data set, respectively, for differentiating nonsevere (stage T1~T3) from severe (stage T4) patients. Conclusions The hybrid model integrating radiomics features and deep features showed favorable performance in diagnosing the pathological stage of GC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jason0023发布了新的文献求助10
1秒前
搞笑煎蛋完成签到 ,获得积分10
1秒前
欢欢发布了新的文献求助10
2秒前
andrele发布了新的文献求助10
5秒前
6秒前
欣__完成签到 ,获得积分10
8秒前
阳静完成签到 ,获得积分10
8秒前
8秒前
ding应助沿途东行采纳,获得10
8秒前
ssc发布了新的文献求助10
9秒前
酷波er应助1206425219密采纳,获得10
9秒前
宁秘发布了新的文献求助10
11秒前
李健的小迷弟应助test采纳,获得10
11秒前
大头娃娃发布了新的文献求助10
13秒前
Owen应助科研通管家采纳,获得10
14秒前
李健应助科研通管家采纳,获得10
14秒前
冯佳祥完成签到,获得积分10
14秒前
香蕉觅云应助科研通管家采纳,获得10
14秒前
完美世界应助科研通管家采纳,获得10
14秒前
乐乐应助科研通管家采纳,获得30
15秒前
大模型应助科研通管家采纳,获得10
15秒前
Lucas应助科研通管家采纳,获得10
15秒前
顾矜应助科研通管家采纳,获得10
15秒前
大模型应助科研通管家采纳,获得10
15秒前
15秒前
17秒前
宁秘完成签到,获得积分10
17秒前
所所应助辰叶采纳,获得10
17秒前
科研通AI2S应助EMC采纳,获得10
20秒前
Avvei完成签到,获得积分10
20秒前
20秒前
goldenrod完成签到,获得积分10
20秒前
明理楷瑞发布了新的文献求助10
21秒前
harmon完成签到,获得积分10
21秒前
22秒前
威武的雨筠完成签到 ,获得积分10
22秒前
23秒前
24秒前
桐桐应助andrele采纳,获得10
24秒前
突突leolo完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252840
求助须知:如何正确求助?哪些是违规求助? 4416384
关于积分的说明 13749582
捐赠科研通 4288491
什么是DOI,文献DOI怎么找? 2352947
邀请新用户注册赠送积分活动 1349756
关于科研通互助平台的介绍 1309339