Development and validation of a CT-based model for noninvasive prediction of T stage in gastric cancer: A multicenter study (Preprint)

无线电技术 阶段(地层学) 人工智能 深度学习 机器学习 医学 癌症 计算机科学 内科学 古生物学 生物
作者
Tao Jin,Dan Liu,Fubi Hu,Xiao Zhang,Hongkun Yin,Huiling Zhang,Kai Zhang,Zixing Huang,Kun Yang
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:26: e56851-e56851 被引量:2
标识
DOI:10.2196/56851
摘要

Background As part of the TNM (tumor-node-metastasis) staging system, T staging based on tumor depth is crucial for developing treatment plans. Previous studies have constructed a deep learning model based on computed tomographic (CT) radiomic signatures to predict the number of lymph node metastases and survival in patients with resected gastric cancer (GC). However, few studies have reported the combination of deep learning and radiomics in predicting T staging in GC. Objective This study aimed to develop a CT-based model for automatic prediction of the T stage of GC via radiomics and deep learning. Methods A total of 771 GC patients from 3 centers were retrospectively enrolled and divided into training, validation, and testing cohorts. Patients with GC were classified into mild (stage T1 and T2), moderate (stage T3), and severe (stage T4) groups. Three predictive models based on the labeled CT images were constructed using the radiomics features (radiomics model), deep features (deep learning model), and a combination of both (hybrid model). Results The overall classification accuracy of the radiomics model was 64.3% in the internal testing data set. The deep learning model and hybrid model showed better performance than the radiomics model, with overall classification accuracies of 75.7% (P=.04) and 81.4% (P=.001), respectively. On the subtasks of binary classification of tumor severity, the areas under the curve of the radiomics, deep learning, and hybrid models were 0.875, 0.866, and 0.886 in the internal testing data set and 0.820, 0.818, and 0.972 in the external testing data set, respectively, for differentiating mild (stage T1~T2) from nonmild (stage T3~T4) patients, and were 0.815, 0.892, and 0.894 in the internal testing data set and 0.685, 0.808, and 0.897 in the external testing data set, respectively, for differentiating nonsevere (stage T1~T3) from severe (stage T4) patients. Conclusions The hybrid model integrating radiomics features and deep features showed favorable performance in diagnosing the pathological stage of GC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lgq12697应助Sss采纳,获得10
刚刚
刚刚
1秒前
2秒前
4秒前
庸人自扰的玩笑完成签到,获得积分10
4秒前
谷孟勇发布了新的文献求助10
6秒前
如常驳回了yyzhou应助
7秒前
幸福诗槐完成签到,获得积分10
7秒前
7秒前
syt完成签到,获得积分10
8秒前
8秒前
9秒前
10秒前
blUe完成签到,获得积分10
10秒前
probiotics完成签到,获得积分10
10秒前
12秒前
xjj发布了新的文献求助10
12秒前
陈醒醒完成签到,获得积分10
14秒前
15秒前
15秒前
浮游应助方俊驰采纳,获得10
15秒前
16秒前
薛定谔的猫完成签到,获得积分10
16秒前
卢庆晴完成签到 ,获得积分10
16秒前
wanci应助下雨天留客采纳,获得10
16秒前
易安发布了新的文献求助10
16秒前
美好灵寒发布了新的文献求助10
16秒前
17秒前
17秒前
18秒前
兔子发布了新的文献求助10
18秒前
852应助执着的过客采纳,获得10
18秒前
爆米花应助等待的觅珍采纳,获得10
19秒前
专注的语堂完成签到,获得积分10
20秒前
卢庆晴关注了科研通微信公众号
20秒前
余卓奇发布了新的文献求助10
21秒前
小章发布了新的文献求助10
21秒前
丛士乔发布了新的文献求助10
23秒前
大飞完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4633044
求助须知:如何正确求助?哪些是违规求助? 4029172
关于积分的说明 12466463
捐赠科研通 3715416
什么是DOI,文献DOI怎么找? 2050092
邀请新用户注册赠送积分活动 1081655
科研通“疑难数据库(出版商)”最低求助积分说明 963994