Development and validation of a CT-based model for noninvasive prediction of T stage in gastric cancer: A multicenter study (Preprint)

无线电技术 阶段(地层学) 人工智能 深度学习 机器学习 医学 癌症 计算机科学 内科学 古生物学 生物
作者
Tao Jin,Dan Liu,Fubi Hu,Xiao Zhang,Hongkun Yin,Huiling Zhang,Kai Zhang,Zixing Huang,Kun Yang
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:26: e56851-e56851 被引量:2
标识
DOI:10.2196/56851
摘要

Background As part of the TNM (tumor-node-metastasis) staging system, T staging based on tumor depth is crucial for developing treatment plans. Previous studies have constructed a deep learning model based on computed tomographic (CT) radiomic signatures to predict the number of lymph node metastases and survival in patients with resected gastric cancer (GC). However, few studies have reported the combination of deep learning and radiomics in predicting T staging in GC. Objective This study aimed to develop a CT-based model for automatic prediction of the T stage of GC via radiomics and deep learning. Methods A total of 771 GC patients from 3 centers were retrospectively enrolled and divided into training, validation, and testing cohorts. Patients with GC were classified into mild (stage T1 and T2), moderate (stage T3), and severe (stage T4) groups. Three predictive models based on the labeled CT images were constructed using the radiomics features (radiomics model), deep features (deep learning model), and a combination of both (hybrid model). Results The overall classification accuracy of the radiomics model was 64.3% in the internal testing data set. The deep learning model and hybrid model showed better performance than the radiomics model, with overall classification accuracies of 75.7% (P=.04) and 81.4% (P=.001), respectively. On the subtasks of binary classification of tumor severity, the areas under the curve of the radiomics, deep learning, and hybrid models were 0.875, 0.866, and 0.886 in the internal testing data set and 0.820, 0.818, and 0.972 in the external testing data set, respectively, for differentiating mild (stage T1~T2) from nonmild (stage T3~T4) patients, and were 0.815, 0.892, and 0.894 in the internal testing data set and 0.685, 0.808, and 0.897 in the external testing data set, respectively, for differentiating nonsevere (stage T1~T3) from severe (stage T4) patients. Conclusions The hybrid model integrating radiomics features and deep features showed favorable performance in diagnosing the pathological stage of GC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
victory_liu完成签到,获得积分10
10秒前
Edward完成签到,获得积分10
10秒前
11秒前
忧伤的慕梅完成签到 ,获得积分10
14秒前
武雨寒发布了新的文献求助10
14秒前
如意竺完成签到,获得积分10
16秒前
21秒前
科研通AI5应助大祥牛牛牛采纳,获得10
25秒前
33秒前
36秒前
ekko发布了新的文献求助10
37秒前
武雨寒发布了新的文献求助10
39秒前
量子星尘发布了新的文献求助10
47秒前
笔墨纸砚完成签到 ,获得积分10
48秒前
蛋炒饭不加蛋完成签到,获得积分20
50秒前
闻巷雨完成签到 ,获得积分10
52秒前
Mira完成签到,获得积分10
59秒前
某某完成签到 ,获得积分10
1分钟前
trophozoite完成签到 ,获得积分10
1分钟前
LT完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助30
1分钟前
波里舞完成签到 ,获得积分10
1分钟前
风起枫落完成签到 ,获得积分10
1分钟前
淡淡依霜完成签到 ,获得积分10
1分钟前
自觉匪完成签到 ,获得积分10
1分钟前
拉长的芷烟完成签到 ,获得积分10
1分钟前
橘子海完成签到 ,获得积分10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
SciGPT应助科研通管家采纳,获得150
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
1分钟前
从心随缘完成签到 ,获得积分10
1分钟前
高健伟完成签到 ,获得积分10
1分钟前
笑点低涟妖完成签到 ,获得积分10
1分钟前
shen完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
糖宝完成签到 ,获得积分0
1分钟前
ekko完成签到,获得积分10
1分钟前
骄阳完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Modern Britain, 1750 to the Present (求助第2版!!!) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5162451
求助须知:如何正确求助?哪些是违规求助? 4355630
关于积分的说明 13559898
捐赠科研通 4200487
什么是DOI,文献DOI怎么找? 2303829
邀请新用户注册赠送积分活动 1303798
关于科研通互助平台的介绍 1249967