Solving Expensive Optimization Problems in Dynamic Environments With Meta-Learning

计算机科学 元学习(计算机科学) 元建模 人工智能 工程类 软件工程 系统工程 任务(项目管理)
作者
H. Q. Zhang,Jinliang Ding,Liang Feng,Kay Chen Tan,Ke Li
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:54 (12): 7430-7442
标识
DOI:10.1109/tcyb.2024.3443396
摘要

Dynamic environments pose great challenges for expensive optimization problems, as the objective functions of these problems change over time and thus require remarkable computational resources to track the optimal solutions. Although data-driven evolutionary optimization and Bayesian optimization (BO) approaches have shown promise in solving expensive optimization problems in static environments, the attempts to develop such approaches in dynamic environments remain rarely explored. In this article, we propose a simple yet effective meta-learning-based optimization framework for solving the expensive dynamic optimization problems. This framework is flexible, allowing any off-the-shelf continuously differentiable surrogate model to be used in a plug-in manner, either in data-driven evolutionary optimization or BO approaches. In particular, the framework consists of two unique components: 1) the meta-learning component, in which a gradient-based meta-learning approach is adopted to learn experience (effective model parameters) across different dynamics along the optimization process and 2) the adaptation component, where the learned experience (model parameters) is used as the initial parameters for fast adaptation in the dynamic environment based on few shot samples. By doing so, the optimization process is able to quickly initiate the search in a new environment within a strictly restricted computational budget. Experiments demonstrate the effectiveness of the proposed algorithm framework compared to several state-of-the-art algorithms on common benchmark test problems under different dynamic characteristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
OMG完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
嘿嘿嘿完成签到 ,获得积分20
2秒前
suang发布了新的文献求助10
2秒前
小盆呐完成签到,获得积分10
2秒前
3秒前
蜂蜜柚子发布了新的文献求助10
3秒前
吉孤容完成签到,获得积分10
4秒前
choumaoo完成签到,获得积分10
4秒前
CipherSage应助123w采纳,获得10
4秒前
5秒前
机智的灵发布了新的文献求助10
5秒前
红海完成签到,获得积分10
5秒前
NexusExplorer应助柒柒采纳,获得10
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
6秒前
昏睡的蟠桃应助科研通管家采纳,获得230
6秒前
李健应助科研通管家采纳,获得10
6秒前
SYLH应助科研通管家采纳,获得30
6秒前
科研通AI5应助科研通管家采纳,获得30
6秒前
慕青应助科研通管家采纳,获得10
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
6秒前
田様应助科研通管家采纳,获得10
6秒前
科目三应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
靓丽访枫发布了新的文献求助10
7秒前
tiantianhui发布了新的文献求助10
7秒前
7秒前
青山发布了新的文献求助10
8秒前
8秒前
GT完成签到,获得积分10
8秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661487
求助须知:如何正确求助?哪些是违规求助? 3222499
关于积分的说明 9746283
捐赠科研通 2932184
什么是DOI,文献DOI怎么找? 1605480
邀请新用户注册赠送积分活动 757926
科研通“疑难数据库(出版商)”最低求助积分说明 734579