Artificial intelligence for geoscience: Progress, challenges and perspectives

杠杆(统计) 地球科学 大数据 领域(数学) 重大挑战 人工智能 数据科学 管理科学 计算机科学 地质学 工程类 数据挖掘 数学 操作系统 纯数学
作者
Tianjie Zhao,Sheng Wang,Chaojun Ouyang,M Chen,Chenying Liu,Jin Zhang,Yu Long,Fei Wang,Yong Xie,Jun Li,Wang Fang,Sabine Grunwald,Bryan M. Wong,Fan Zhang,Zhen Qian,Yongjun Xu,Chengqing Yu,Wei Han,Tao Sun,Zezhi Shao
出处
期刊:The Innovation [Elsevier BV]
卷期号:5 (5): 100691-100691 被引量:40
标识
DOI:10.1016/j.xinn.2024.100691
摘要

Public summary•What does AI bring to geoscience? AI has been accelerating and deepening our understanding of Earth Systems in an unprecedented way, including the atmosphere, lithosphere, hydrosphere, cryosphere, biosphere, anthroposphere and the interactions between spheres.•What are the noteworthy challenges of AI in geoscience? As we embrace the huge potential of AI in geoscience, several challenges arise including reliability and interpretability, ethical issues, data security, and high demand and cost.•What is the future of AI in geoscience? The synergy between traditional principles and modern AI-driven techniques holds immense promise and will shape the trajectory of geoscience in upcoming years.AbstractThis paper explores the evolution of geoscientific inquiry, tracing the progression from traditional physics-based models to modern data-driven approaches facilitated by significant advancements in artificial intelligence (AI) and data collection techniques. Traditional models, which are grounded in physical and numerical frameworks, provide robust explanations by explicitly reconstructing underlying physical processes. However, their limitations in comprehensively capturing Earth's complexities and uncertainties pose challenges in optimization and real-world applicability. In contrast, contemporary data-driven models, particularly those utilizing machine learning (ML) and deep learning (DL), leverage extensive geoscience data to glean insights without requiring exhaustive theoretical knowledge. ML techniques have shown promise in addressing Earth science-related questions. Nevertheless, challenges such as data scarcity, computational demands, data privacy concerns, and the "black-box" nature of AI models hinder their seamless integration into geoscience. The integration of physics-based and data-driven methodologies into hybrid models presents an alternative paradigm. These models, which incorporate domain knowledge to guide AI methodologies, demonstrate enhanced efficiency and performance with reduced training data requirements. This review provides a comprehensive overview of geoscientific research paradigms, emphasizing untapped opportunities at the intersection of advanced AI techniques and geoscience. It examines major methodologies, showcases advances in large-scale models, and discusses the challenges and prospects that will shape the future landscape of AI in geoscience. The paper outlines a dynamic field ripe with possibilities, poised to unlock new understandings of Earth's complexities and further advance geoscience exploration.Graphical abstract
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
瘦瘦的冰双完成签到,获得积分10
1秒前
1秒前
羊儿哥哥完成签到,获得积分10
2秒前
yznfly应助TiAmo采纳,获得30
3秒前
Orange应助寂寞的寄松采纳,获得10
3秒前
任大师兄完成签到,获得积分10
3秒前
chali48发布了新的文献求助10
4秒前
123发布了新的文献求助10
4秒前
5秒前
能干的向真应助潇湘学术采纳,获得10
5秒前
ecnuZhao完成签到,获得积分10
6秒前
Orange应助qq采纳,获得10
8秒前
DeepLearning发布了新的文献求助10
9秒前
CipherSage应助我要发nature采纳,获得10
9秒前
123完成签到,获得积分20
10秒前
小李博士发布了新的文献求助10
11秒前
穿山甲坐飞机完成签到 ,获得积分10
11秒前
Jasper应助冷傲采纳,获得10
13秒前
博修发布了新的文献求助10
13秒前
14秒前
Weiweiweixiao完成签到,获得积分10
16秒前
领导范儿应助陈露采纳,获得10
16秒前
16秒前
qq发布了新的文献求助10
19秒前
JUST发布了新的文献求助30
19秒前
20秒前
汉堡包应助瘦瘦的冰双采纳,获得10
20秒前
今后应助yu采纳,获得10
21秒前
22秒前
24秒前
陈露发布了新的文献求助10
27秒前
27秒前
陈少华完成签到 ,获得积分10
27秒前
28秒前
28秒前
老实芙蓉发布了新的文献求助10
28秒前
29秒前
小李博士发布了新的文献求助10
30秒前
彭于晏应助ZWK采纳,获得10
32秒前
Taiko发布了新的文献求助10
33秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962850
求助须知:如何正确求助?哪些是违规求助? 3508775
关于积分的说明 11142938
捐赠科研通 3241643
什么是DOI,文献DOI怎么找? 1791625
邀请新用户注册赠送积分活动 872998
科研通“疑难数据库(出版商)”最低求助积分说明 803571