清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Contribution of open access databases to intensive care medicine research: a scoping review (Preprint)

预印本 万维网 梅德林 数据库 计算机科学 医学 数据科学 互联网隐私 政治学 法学
作者
Julien Kallout,Antoine Lamer,Julien Grosjean,Gaëtan Kerdelhué,Guillaume Bouzillé,Thomas Clavier,Benjamin Popoff
出处
期刊:Journal of Medical Internet Research 卷期号:27: e57263-e57263 被引量:1
标识
DOI:10.2196/57263
摘要

Intensive care units (ICUs) handle the most critical patients with a high risk of mortality. Due to those conditions, close monitoring is necessary and therefore, a large volume of data is collected. Collaborative ventures have enabled the emergence of large open access databases, leading to numerous publications in the field. The aim of this scoping review is to identify the characteristics of studies using open access intensive care databases and to describe the contribution of these studies to intensive care research. The research was conducted using 3 databases (PubMed-MEDLINE, Embase, and Web of Science) from the inception of each database to August 1, 2022. We included original articles based on 4 open databases of patients admitted to ICUs: Amsterdam University Medical Centers Database, eICU Collaborative Research Database, High time resolution ICU dataset, Medical Information Mart for Intensive Care (II to IV). A double-blinded screening for eligibility was performed, first on the title and abstract and subsequently on the full-text articles. Characteristics relating to publication journals, study design, and statistical analyses were extracted and analyzed. We observed a consistent increase in the number of publications from these databases since 2016. The Medical Information Mart for Intensive Care databases were the most frequently used. The highest contributions came from China and the United States, with 689 (52.7%) and 370 (28.3%) publications respectively. The median impact factor of publications was 3.8 (IQR 2.8-5.8). Topics related to cardiovascular and infectious diseases were predominant, accounting for 333 (25.5%) and 324 (24.8%) articles, respectively. Logistic regression emerged as the most commonly used statistical model for both inference and prediction questions, featuring in 396 (55.5%) and 281 (47.5%) studies, respectively. A majority of the inference studies yielded statistically significant results (84.0%). In prediction studies, area under the curve was the most frequent performance measure, with a median value of 0.840 (IQR 0.780-0.890). The abundance of scientific outputs resulting from these databases, coupled with the diversity of topics addressed, highlight the importance of these databases as valuable resources for clinical research. This suggests their potential impact on clinical practice within intensive care settings. However, the quality and clinical relevance of these studies remains highly heterogeneous, with a majority of articles being published in low-impact factor journals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
28秒前
dahai发布了新的文献求助10
35秒前
dahai完成签到,获得积分10
42秒前
tmobiusx完成签到,获得积分10
1分钟前
1分钟前
xiaogang127完成签到 ,获得积分10
1分钟前
水兰色发布了新的文献求助30
1分钟前
fogsea完成签到,获得积分0
1分钟前
jfw完成签到 ,获得积分10
1分钟前
隐形曼青应助力王采纳,获得10
1分钟前
WLY完成签到 ,获得积分10
1分钟前
科研狗完成签到 ,获得积分10
1分钟前
浚稚完成签到 ,获得积分10
2分钟前
铜锣湾新之助完成签到 ,获得积分10
2分钟前
GGBond完成签到 ,获得积分10
2分钟前
wure10完成签到 ,获得积分10
3分钟前
aniu完成签到,获得积分10
3分钟前
力王完成签到,获得积分10
3分钟前
左丘冥发布了新的文献求助10
3分钟前
会笑的蜗牛完成签到 ,获得积分10
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
胖胖橘完成签到 ,获得积分10
3分钟前
力王发布了新的文献求助10
3分钟前
火星上惜天完成签到 ,获得积分10
4分钟前
今后应助cqnusq采纳,获得10
4分钟前
heidi完成签到 ,获得积分10
4分钟前
4分钟前
cqnusq发布了新的文献求助10
5分钟前
cqnusq完成签到,获得积分10
5分钟前
juan完成签到 ,获得积分10
5分钟前
5分钟前
微生完成签到 ,获得积分10
5分钟前
852应助缓慢珠采纳,获得10
5分钟前
Mr-Li-Happy发布了新的文献求助10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
wang完成签到,获得积分10
5分钟前
缓慢珠完成签到,获得积分10
5分钟前
Tina应助Mr-Li-Happy采纳,获得50
5分钟前
蓝意完成签到,获得积分0
5分钟前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3491367
求助须知:如何正确求助?哪些是违规求助? 3077983
关于积分的说明 9151302
捐赠科研通 2770610
什么是DOI,文献DOI怎么找? 1520544
邀请新用户注册赠送积分活动 704589
科研通“疑难数据库(出版商)”最低求助积分说明 702323