Disentangled Multi-interest Representation Learning for Sequential Recommendation

计算机科学 代表(政治) 人工智能 推荐系统 机器学习 政治 政治学 法学
作者
Yingpeng Du,Ziyan Wang,Zhu Sun,Yining Ma,Hongzhi Liu,Jie Zhang
标识
DOI:10.1145/3637528.3671800
摘要

Recently, much effort has been devoted to modeling users' multi-interests (aka multi-faceted preferences) based on their behaviors, aiming to accurately capture users' complex preferences. Existing methods attempt to model each interest of users through a distinct representation, but these multi-interest representations easily collapse into similar ones due to a lack of effective guidance. In this paper, we propose a generic multi-interest method for sequential recommendation, achieving disentangled representation learning of diverse interests technically and theoretically. To alleviate the collapse issue of multi-interests, we propose to conduct item partition guided by their likelihood of being co-purchased in a global view. It can encourage items in each group to focus on a discriminated interest, thus achieving effective disentangled learning of multi-interests. Specifically, we first prove the theoretical connection between item partition and spectral clustering, demonstrating its effectiveness in alleviating item-level and facet-level collapse issues that hinder existing disentangled methods. To efficiently optimize this problem, we then propose a Markov Random Field (MRF)-based method that samples small-scale sub-graphs from two separate MRFs, thus it can be approximated with a cross-entropy loss and optimized through contrastive learning. Finally, we perform multi-task learning to seamlessly align item partition learning with multi-interest modeling for more accurate recommendation. Experiments on three real-world datasets show that our method significantly outperforms state-of-the-art methods and can flexibly integrate with existing multi-interest models as a plugin to enhance their performances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
薰硝壤应助linty采纳,获得50
1秒前
1秒前
1秒前
狄从灵发布了新的文献求助10
2秒前
我是老大应助Febrine0502采纳,获得50
2秒前
细心故事发布了新的文献求助10
2秒前
Nanki发布了新的文献求助30
2秒前
FashionBoy应助ziyue采纳,获得10
2秒前
蔺剑愁完成签到,获得积分10
3秒前
人间烟火完成签到,获得积分10
4秒前
4秒前
暴躁的惜筠完成签到,获得积分10
4秒前
4秒前
早上好发布了新的文献求助10
5秒前
5秒前
小马甲应助科研通管家采纳,获得10
6秒前
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
6秒前
有机会吗发布了新的文献求助10
7秒前
Katie发布了新的文献求助10
8秒前
8秒前
8秒前
xiaoqin完成签到,获得积分10
8秒前
行走江湖的破忒头完成签到,获得积分0
9秒前
9秒前
10秒前
10秒前
蔺剑愁关注了科研通微信公众号
10秒前
xiny发布了新的文献求助20
11秒前
11秒前
科研通AI2S应助左友铭采纳,获得10
11秒前
爱学习发布了新的文献求助10
11秒前
IAMXC发布了新的文献求助10
11秒前
lwa完成签到,获得积分10
12秒前
12秒前
青青发布了新的文献求助10
12秒前
暴躁的惜筠关注了科研通微信公众号
14秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148222
求助须知:如何正确求助?哪些是违规求助? 2799394
关于积分的说明 7834549
捐赠科研通 2456604
什么是DOI,文献DOI怎么找? 1307321
科研通“疑难数据库(出版商)”最低求助积分说明 628124
版权声明 601655