清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Disentangled Multi-interest Representation Learning for Sequential Recommendation

计算机科学 代表(政治) 人工智能 推荐系统 机器学习 政治学 政治 法学
作者
Yingpeng Du,Ziyan Wang,Zhu Sun,Yining Ma,Hongzhi Liu,Jie Zhang
标识
DOI:10.1145/3637528.3671800
摘要

Recently, much effort has been devoted to modeling users' multi-interests (aka multi-faceted preferences) based on their behaviors, aiming to accurately capture users' complex preferences. Existing methods attempt to model each interest of users through a distinct representation, but these multi-interest representations easily collapse into similar ones due to a lack of effective guidance. In this paper, we propose a generic multi-interest method for sequential recommendation, achieving disentangled representation learning of diverse interests technically and theoretically. To alleviate the collapse issue of multi-interests, we propose to conduct item partition guided by their likelihood of being co-purchased in a global view. It can encourage items in each group to focus on a discriminated interest, thus achieving effective disentangled learning of multi-interests. Specifically, we first prove the theoretical connection between item partition and spectral clustering, demonstrating its effectiveness in alleviating item-level and facet-level collapse issues that hinder existing disentangled methods. To efficiently optimize this problem, we then propose a Markov Random Field (MRF)-based method that samples small-scale sub-graphs from two separate MRFs, thus it can be approximated with a cross-entropy loss and optimized through contrastive learning. Finally, we perform multi-task learning to seamlessly align item partition learning with multi-interest modeling for more accurate recommendation. Experiments on three real-world datasets show that our method significantly outperforms state-of-the-art methods and can flexibly integrate with existing multi-interest models as a plugin to enhance their performances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一天完成签到 ,获得积分10
6秒前
25秒前
38秒前
yuan0320发布了新的文献求助10
43秒前
风中可仁完成签到 ,获得积分10
49秒前
李木禾完成签到 ,获得积分10
50秒前
xzy998应助科研通管家采纳,获得10
1分钟前
搜集达人应助科研通管家采纳,获得10
1分钟前
xzy998应助科研通管家采纳,获得10
1分钟前
lhl完成签到,获得积分10
1分钟前
希望天下0贩的0应助Luke采纳,获得10
1分钟前
小贾爱喝冰美式完成签到 ,获得积分10
1分钟前
Monicadd完成签到 ,获得积分10
1分钟前
加贝完成签到 ,获得积分10
1分钟前
小唐尼完成签到,获得积分10
2分钟前
2分钟前
Yidie完成签到,获得积分10
2分钟前
2分钟前
Luke发布了新的文献求助10
2分钟前
3分钟前
Lucas应助Developing_human采纳,获得10
3分钟前
xzy998应助科研通管家采纳,获得10
3分钟前
xzy998应助科研通管家采纳,获得10
3分钟前
xzy998应助科研通管家采纳,获得10
3分钟前
无花果应助科研通管家采纳,获得10
3分钟前
xzy998应助科研通管家采纳,获得10
3分钟前
CodeCraft应助Luke采纳,获得10
3分钟前
3分钟前
3分钟前
MZT完成签到 ,获得积分10
4分钟前
Criminology34应助peili采纳,获得10
4分钟前
霍碧完成签到,获得积分10
4分钟前
4分钟前
婉莹完成签到 ,获得积分0
4分钟前
Luke发布了新的文献求助10
4分钟前
沉沉完成签到 ,获得积分0
5分钟前
xzy998应助科研通管家采纳,获得10
5分钟前
下水道修理工完成签到,获得积分10
5分钟前
清澈的爱只为中国完成签到 ,获得积分10
5分钟前
辣小扬完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644977
求助须知:如何正确求助?哪些是违规求助? 4766757
关于积分的说明 15026045
捐赠科研通 4803359
什么是DOI,文献DOI怎么找? 2568238
邀请新用户注册赠送积分活动 1525661
关于科研通互助平台的介绍 1485192