Disentangled Multi-interest Representation Learning for Sequential Recommendation

计算机科学 代表(政治) 人工智能 推荐系统 机器学习 政治 政治学 法学
作者
Yingpeng Du,Ziyan Wang,Zhu Sun,Yining Ma,Hongzhi Liu,Jie Zhang
标识
DOI:10.1145/3637528.3671800
摘要

Recently, much effort has been devoted to modeling users' multi-interests (aka multi-faceted preferences) based on their behaviors, aiming to accurately capture users' complex preferences. Existing methods attempt to model each interest of users through a distinct representation, but these multi-interest representations easily collapse into similar ones due to a lack of effective guidance. In this paper, we propose a generic multi-interest method for sequential recommendation, achieving disentangled representation learning of diverse interests technically and theoretically. To alleviate the collapse issue of multi-interests, we propose to conduct item partition guided by their likelihood of being co-purchased in a global view. It can encourage items in each group to focus on a discriminated interest, thus achieving effective disentangled learning of multi-interests. Specifically, we first prove the theoretical connection between item partition and spectral clustering, demonstrating its effectiveness in alleviating item-level and facet-level collapse issues that hinder existing disentangled methods. To efficiently optimize this problem, we then propose a Markov Random Field (MRF)-based method that samples small-scale sub-graphs from two separate MRFs, thus it can be approximated with a cross-entropy loss and optimized through contrastive learning. Finally, we perform multi-task learning to seamlessly align item partition learning with multi-interest modeling for more accurate recommendation. Experiments on three real-world datasets show that our method significantly outperforms state-of-the-art methods and can flexibly integrate with existing multi-interest models as a plugin to enhance their performances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
专注月亮发布了新的文献求助10
1秒前
1秒前
难过若枫发布了新的文献求助10
2秒前
2秒前
2秒前
端庄梦桃发布了新的文献求助30
3秒前
簌簌发布了新的文献求助10
4秒前
4秒前
ding应助青筠采纳,获得10
5秒前
q额发布了新的文献求助10
5秒前
tttttt发布了新的文献求助10
6秒前
7秒前
吴怀硕发布了新的文献求助10
8秒前
8秒前
干净冰露发布了新的文献求助10
9秒前
召唤兽完成签到,获得积分20
10秒前
Liu发布了新的文献求助10
13秒前
13秒前
13秒前
13秒前
pgg发布了新的文献求助10
13秒前
Wind完成签到,获得积分0
14秒前
14秒前
小陈栗子完成签到,获得积分20
15秒前
北沐完成签到,获得积分10
15秒前
AN发布了新的文献求助10
16秒前
16秒前
知行者发布了新的文献求助10
17秒前
斯文败类应助我不得依较采纳,获得10
18秒前
小陈栗子发布了新的文献求助10
18秒前
Cookiee完成签到 ,获得积分10
18秒前
18秒前
量子星尘发布了新的文献求助10
18秒前
Owen应助高高的东蒽采纳,获得10
19秒前
19秒前
DyG完成签到,获得积分10
19秒前
20秒前
20秒前
召唤兽发布了新的文献求助10
21秒前
ruirui完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425184
求助须知:如何正确求助?哪些是违规求助? 4539282
关于积分的说明 14166597
捐赠科研通 4456440
什么是DOI,文献DOI怎么找? 2444204
邀请新用户注册赠送积分活动 1435246
关于科研通互助平台的介绍 1412568