Disentangled Multi-interest Representation Learning for Sequential Recommendation

计算机科学 代表(政治) 人工智能 推荐系统 机器学习 政治 政治学 法学
作者
Yingpeng Du,Ziyan Wang,Zhu Sun,Yining Ma,Hongzhi Liu,Jie Zhang
标识
DOI:10.1145/3637528.3671800
摘要

Recently, much effort has been devoted to modeling users' multi-interests (aka multi-faceted preferences) based on their behaviors, aiming to accurately capture users' complex preferences. Existing methods attempt to model each interest of users through a distinct representation, but these multi-interest representations easily collapse into similar ones due to a lack of effective guidance. In this paper, we propose a generic multi-interest method for sequential recommendation, achieving disentangled representation learning of diverse interests technically and theoretically. To alleviate the collapse issue of multi-interests, we propose to conduct item partition guided by their likelihood of being co-purchased in a global view. It can encourage items in each group to focus on a discriminated interest, thus achieving effective disentangled learning of multi-interests. Specifically, we first prove the theoretical connection between item partition and spectral clustering, demonstrating its effectiveness in alleviating item-level and facet-level collapse issues that hinder existing disentangled methods. To efficiently optimize this problem, we then propose a Markov Random Field (MRF)-based method that samples small-scale sub-graphs from two separate MRFs, thus it can be approximated with a cross-entropy loss and optimized through contrastive learning. Finally, we perform multi-task learning to seamlessly align item partition learning with multi-interest modeling for more accurate recommendation. Experiments on three real-world datasets show that our method significantly outperforms state-of-the-art methods and can flexibly integrate with existing multi-interest models as a plugin to enhance their performances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梦溪完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
陈德馨发布了新的文献求助30
2秒前
2秒前
sunshine完成签到,获得积分10
3秒前
忠义完成签到,获得积分10
3秒前
大大彬发布了新的文献求助10
5秒前
zhangkx23发布了新的文献求助10
5秒前
观赏发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
冯佳祥完成签到,获得积分10
6秒前
甜甜的大米完成签到,获得积分10
6秒前
小冯发布了新的文献求助10
7秒前
Arlene发布了新的文献求助10
7秒前
huuuuuu完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
lixm发布了新的文献求助10
9秒前
9秒前
赘婿应助星辉斑斓采纳,获得10
9秒前
上官若男应助星辉斑斓采纳,获得10
9秒前
自然衣完成签到,获得积分10
9秒前
stephenzh完成签到 ,获得积分10
10秒前
wjx发布了新的文献求助10
10秒前
10秒前
在水一方应助胡浮浮采纳,获得10
11秒前
科研通AI6应助翟肇永采纳,获得10
11秒前
华仔应助清秀凌蝶采纳,获得10
11秒前
幻聽关注了科研通微信公众号
12秒前
科研小趴菜发布了新的文献求助150
13秒前
14秒前
14秒前
14秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618980
求助须知:如何正确求助?哪些是违规求助? 4703923
关于积分的说明 14924415
捐赠科研通 4758994
什么是DOI,文献DOI怎么找? 2550336
邀请新用户注册赠送积分活动 1513125
关于科研通互助平台的介绍 1474401