Disentangled Multi-interest Representation Learning for Sequential Recommendation

计算机科学 代表(政治) 人工智能 推荐系统 机器学习 政治 政治学 法学
作者
Yingpeng Du,Ziyan Wang,Zhu Sun,Yining Ma,Hongzhi Liu,Jie Zhang
标识
DOI:10.1145/3637528.3671800
摘要

Recently, much effort has been devoted to modeling users' multi-interests (aka multi-faceted preferences) based on their behaviors, aiming to accurately capture users' complex preferences. Existing methods attempt to model each interest of users through a distinct representation, but these multi-interest representations easily collapse into similar ones due to a lack of effective guidance. In this paper, we propose a generic multi-interest method for sequential recommendation, achieving disentangled representation learning of diverse interests technically and theoretically. To alleviate the collapse issue of multi-interests, we propose to conduct item partition guided by their likelihood of being co-purchased in a global view. It can encourage items in each group to focus on a discriminated interest, thus achieving effective disentangled learning of multi-interests. Specifically, we first prove the theoretical connection between item partition and spectral clustering, demonstrating its effectiveness in alleviating item-level and facet-level collapse issues that hinder existing disentangled methods. To efficiently optimize this problem, we then propose a Markov Random Field (MRF)-based method that samples small-scale sub-graphs from two separate MRFs, thus it can be approximated with a cross-entropy loss and optimized through contrastive learning. Finally, we perform multi-task learning to seamlessly align item partition learning with multi-interest modeling for more accurate recommendation. Experiments on three real-world datasets show that our method significantly outperforms state-of-the-art methods and can flexibly integrate with existing multi-interest models as a plugin to enhance their performances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
666发布了新的文献求助10
1秒前
sevenvictory应助TJY采纳,获得10
1秒前
佩佩发布了新的文献求助10
3秒前
传奇3应助友好旭尧采纳,获得10
3秒前
4秒前
6260发布了新的文献求助30
4秒前
小二郎应助勤劳绿毛龟采纳,获得10
4秒前
ZN发布了新的文献求助10
4秒前
犹豫小蚂蚁完成签到,获得积分10
5秒前
刘二狗发布了新的文献求助10
5秒前
6秒前
左丘秋尽完成签到,获得积分10
7秒前
7秒前
CNX完成签到,获得积分10
7秒前
CHEN__02_发布了新的文献求助10
8秒前
Djnsbj发布了新的文献求助10
8秒前
娃哈哈完成签到 ,获得积分10
9秒前
9秒前
9秒前
10秒前
10秒前
SONG完成签到,获得积分10
10秒前
ikun完成签到,获得积分20
11秒前
碧蓝老虎完成签到,获得积分10
11秒前
12秒前
汉堡包应助勤劳绿毛龟采纳,获得10
12秒前
Lucas应助勤劳绿毛龟采纳,获得10
12秒前
NexusExplorer应助勤劳绿毛龟采纳,获得10
12秒前
刘二狗完成签到,获得积分10
12秒前
英姑应助勤劳绿毛龟采纳,获得10
12秒前
共享精神应助勤劳绿毛龟采纳,获得10
12秒前
科目三应助勤劳绿毛龟采纳,获得10
12秒前
Max完成签到,获得积分10
12秒前
烟花应助勤劳绿毛龟采纳,获得10
12秒前
情怀应助勤劳绿毛龟采纳,获得10
12秒前
在水一方应助勤劳绿毛龟采纳,获得10
12秒前
Orange应助勤劳绿毛龟采纳,获得10
12秒前
哈哈发布了新的文献求助10
14秒前
clyhg完成签到,获得积分10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966626
求助须知:如何正确求助?哪些是违规求助? 3512100
关于积分的说明 11161688
捐赠科研通 3246938
什么是DOI,文献DOI怎么找? 1793609
邀请新用户注册赠送积分活动 874495
科研通“疑难数据库(出版商)”最低求助积分说明 804420