Disentangled Multi-interest Representation Learning for Sequential Recommendation

计算机科学 代表(政治) 人工智能 推荐系统 机器学习 政治 政治学 法学
作者
Yingpeng Du,Ziyan Wang,Zhu Sun,Yining Ma,Hongzhi Liu,Jie Zhang
标识
DOI:10.1145/3637528.3671800
摘要

Recently, much effort has been devoted to modeling users' multi-interests (aka multi-faceted preferences) based on their behaviors, aiming to accurately capture users' complex preferences. Existing methods attempt to model each interest of users through a distinct representation, but these multi-interest representations easily collapse into similar ones due to a lack of effective guidance. In this paper, we propose a generic multi-interest method for sequential recommendation, achieving disentangled representation learning of diverse interests technically and theoretically. To alleviate the collapse issue of multi-interests, we propose to conduct item partition guided by their likelihood of being co-purchased in a global view. It can encourage items in each group to focus on a discriminated interest, thus achieving effective disentangled learning of multi-interests. Specifically, we first prove the theoretical connection between item partition and spectral clustering, demonstrating its effectiveness in alleviating item-level and facet-level collapse issues that hinder existing disentangled methods. To efficiently optimize this problem, we then propose a Markov Random Field (MRF)-based method that samples small-scale sub-graphs from two separate MRFs, thus it can be approximated with a cross-entropy loss and optimized through contrastive learning. Finally, we perform multi-task learning to seamlessly align item partition learning with multi-interest modeling for more accurate recommendation. Experiments on three real-world datasets show that our method significantly outperforms state-of-the-art methods and can flexibly integrate with existing multi-interest models as a plugin to enhance their performances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
王咚咚发布了新的文献求助10
2秒前
zzzrrr发布了新的文献求助10
3秒前
rmrb完成签到,获得积分10
3秒前
bkagyin应助WaitP采纳,获得30
4秒前
开开发布了新的文献求助10
4秒前
清新的问枫完成签到,获得积分10
4秒前
搜集达人应助hexy629采纳,获得20
4秒前
科研通AI6应助D-L@rabbit采纳,获得10
5秒前
5秒前
马亚飞完成签到,获得积分10
6秒前
7秒前
8秒前
我是老大应助嘻嘻采纳,获得30
8秒前
曾经若南完成签到 ,获得积分10
8秒前
lulu发布了新的文献求助10
8秒前
领导范儿应助changnan采纳,获得10
9秒前
9秒前
fiife应助YY采纳,获得10
10秒前
CC完成签到,获得积分10
10秒前
Soluja完成签到,获得积分20
10秒前
开开完成签到,获得积分10
10秒前
Juliette发布了新的文献求助10
11秒前
YYAXL发布了新的文献求助20
11秒前
普萘洛尔完成签到,获得积分10
11秒前
11秒前
hulian发布了新的文献求助10
11秒前
12秒前
苏梗发布了新的文献求助10
13秒前
小蘑菇应助子小采纳,获得10
13秒前
MMMM发布了新的文献求助30
13秒前
小何发布了新的文献求助50
14秒前
wanci应助丶huasheng采纳,获得10
15秒前
小正发布了新的文献求助10
16秒前
16秒前
17秒前
20秒前
21秒前
bubb1e完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589963
求助须知:如何正确求助?哪些是违规求助? 4674416
关于积分的说明 14793871
捐赠科研通 4629469
什么是DOI,文献DOI怎么找? 2532480
邀请新用户注册赠送积分活动 1501159
关于科研通互助平台的介绍 1468527