Disentangled Multi-interest Representation Learning for Sequential Recommendation

计算机科学 代表(政治) 人工智能 推荐系统 机器学习 政治 政治学 法学
作者
Yingpeng Du,Ziyan Wang,Zhu Sun,Yining Ma,Hongzhi Liu,Jie Zhang
标识
DOI:10.1145/3637528.3671800
摘要

Recently, much effort has been devoted to modeling users' multi-interests (aka multi-faceted preferences) based on their behaviors, aiming to accurately capture users' complex preferences. Existing methods attempt to model each interest of users through a distinct representation, but these multi-interest representations easily collapse into similar ones due to a lack of effective guidance. In this paper, we propose a generic multi-interest method for sequential recommendation, achieving disentangled representation learning of diverse interests technically and theoretically. To alleviate the collapse issue of multi-interests, we propose to conduct item partition guided by their likelihood of being co-purchased in a global view. It can encourage items in each group to focus on a discriminated interest, thus achieving effective disentangled learning of multi-interests. Specifically, we first prove the theoretical connection between item partition and spectral clustering, demonstrating its effectiveness in alleviating item-level and facet-level collapse issues that hinder existing disentangled methods. To efficiently optimize this problem, we then propose a Markov Random Field (MRF)-based method that samples small-scale sub-graphs from two separate MRFs, thus it can be approximated with a cross-entropy loss and optimized through contrastive learning. Finally, we perform multi-task learning to seamlessly align item partition learning with multi-interest modeling for more accurate recommendation. Experiments on three real-world datasets show that our method significantly outperforms state-of-the-art methods and can flexibly integrate with existing multi-interest models as a plugin to enhance their performances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助刘怀蕊采纳,获得10
刚刚
刚刚
t_suo发布了新的文献求助30
1秒前
LJL发布了新的文献求助10
2秒前
xyz发布了新的文献求助10
2秒前
婷婷完成签到,获得积分10
2秒前
翔哥完成签到,获得积分10
3秒前
shotgod发布了新的文献求助10
3秒前
消烦员完成签到 ,获得积分10
3秒前
杳鸢应助su采纳,获得30
5秒前
good发布了新的文献求助10
5秒前
chenxin7271完成签到,获得积分10
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
yizhiGao应助科研通管家采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
所所应助科研通管家采纳,获得10
5秒前
马蹄应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
Orange应助科研通管家采纳,获得10
5秒前
5秒前
研友_LX66qZ完成签到,获得积分10
5秒前
传奇3应助科研通管家采纳,获得30
6秒前
Akim应助火星上的听云采纳,获得10
6秒前
唐博凡应助科研通管家采纳,获得10
6秒前
西柚完成签到,获得积分10
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
Orange应助科研通管家采纳,获得10
6秒前
kingwill应助科研通管家采纳,获得20
6秒前
SciGPT应助洛鸢采纳,获得10
6秒前
6秒前
CipherSage应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
soso应助科研通管家采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得10
7秒前
我是老大应助科研通管家采纳,获得10
7秒前
yizhiGao应助科研通管家采纳,获得10
7秒前
科目三应助科研通管家采纳,获得10
7秒前
星威应助科研通管家采纳,获得20
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762