River algal blooms can be estimated by remote sensing reflectance

水华 富营养化 环境科学 赤潮 反射率 遥感 布鲁姆 水文学(农业) 海洋学 生态学 地质学 营养物 生物 浮游植物 物理 岩土工程 光学
作者
Tonghui Huang,Rui Xia,Kai Zhang,Yan Chen,Yuanxin Ren,Jinxi Song,Yao Wang,Chengjian Liu
出处
期刊:Environmental Research Letters [IOP Publishing]
标识
DOI:10.1088/1748-9326/ad7043
摘要

Abstract River eutrophication is difficult to diagnose and estimate quantitatively because of its complex degradation mechanism in large river systems. Conventional monitoring and modeling methods are limited to accurately revealing the evolution process and trends of river aquatic organisms. In the present study, based on HJ-1A/1B CCD sensor, combined with genetic algorithm (GA) and regression tree (GART), a remote sensing inversion prediction model was established; the model can estimate algal blooms in the Han River affected by China's Middle Route of the South-to-North Water Diversion Project (SNWTP) . During the outbreak of algal blooms, the near-infrared band reflectance evidently increased between 2009 and 2015, with increasing algal density. The algal density in the downstream of the Han River has a nearly synchronous positive change with the reflectance in the B4 (near-infrared) band and a nearly synchronous reverse change with the B1 (blue) band. B1 and B4 screened by GA reduced redundancy by 14%, leading to a good prediction performance (R2=0.88). According to GART and partial dependence analysis, the B4 band is a crucial characterization factor of algal blooms in the Han River. When the remote sensing band was in the range of B1 ≥0.085 and B4 ≤0.101, the algal density was lower than 0.15 × 107 cells/L, indicating no algal bloom in the downstream of the Han River. When B4 was >0.103 and B1 ≤0.076, algal density was higher than 1 × 107 cells/L and algal blooms were very likely to occur. These findings could provide a scientific reference for diagnosing and predicting large-scale water ecological degradation in similar watersheds.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助whj采纳,获得10
刚刚
龙妍琳完成签到,获得积分10
刚刚
颜万声完成签到,获得积分10
1秒前
桑榆。发布了新的文献求助10
2秒前
polarbear完成签到 ,获得积分10
3秒前
葡萄糖完成签到,获得积分10
4秒前
脑洞疼应助老解采纳,获得10
4秒前
seal发布了新的文献求助10
4秒前
全智贤发布了新的文献求助10
4秒前
chiyudoubao发布了新的文献求助10
4秒前
田様应助SEEME采纳,获得10
4秒前
4秒前
好好想想发布了新的文献求助10
5秒前
6秒前
雪白炎彬完成签到,获得积分10
6秒前
6秒前
哈哈完成签到,获得积分10
7秒前
菠萝吹雪完成签到,获得积分10
7秒前
LINING发布了新的文献求助10
7秒前
rsy完成签到,获得积分10
7秒前
8秒前
kings完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
FashionBoy应助种一个月亮采纳,获得10
9秒前
10秒前
hao发布了新的文献求助10
10秒前
Hui_2023发布了新的文献求助30
10秒前
11秒前
12秒前
好好想想完成签到,获得积分10
13秒前
秋雅发布了新的文献求助10
14秒前
15秒前
15秒前
Bean完成签到,获得积分10
15秒前
15秒前
专注天思关注了科研通微信公众号
16秒前
今后应助发嗲的怜珊采纳,获得10
16秒前
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156157
求助须知:如何正确求助?哪些是违规求助? 2807647
关于积分的说明 7873898
捐赠科研通 2465881
什么是DOI,文献DOI怎么找? 1312484
科研通“疑难数据库(出版商)”最低求助积分说明 630109
版权声明 601905