River algal blooms can be estimated by remote sensing reflectance

水华 富营养化 环境科学 赤潮 反射率 遥感 布鲁姆 水文学(农业) 海洋学 生态学 地质学 营养物 生物 浮游植物 物理 岩土工程 光学
作者
Tonghui Huang,Rui Xia,Kai Zhang,Yan Chen,Yuanxin Ren,Jinxi Song,Yao Wang,Chengjian Liu
出处
期刊:Environmental Research Letters [IOP Publishing]
标识
DOI:10.1088/1748-9326/ad7043
摘要

Abstract River eutrophication is difficult to diagnose and estimate quantitatively because of its complex degradation mechanism in large river systems. Conventional monitoring and modeling methods are limited to accurately revealing the evolution process and trends of river aquatic organisms. In the present study, based on HJ-1A/1B CCD sensor, combined with genetic algorithm (GA) and regression tree (GART), a remote sensing inversion prediction model was established; the model can estimate algal blooms in the Han River affected by China's Middle Route of the South-to-North Water Diversion Project (SNWTP) . During the outbreak of algal blooms, the near-infrared band reflectance evidently increased between 2009 and 2015, with increasing algal density. The algal density in the downstream of the Han River has a nearly synchronous positive change with the reflectance in the B4 (near-infrared) band and a nearly synchronous reverse change with the B1 (blue) band. B1 and B4 screened by GA reduced redundancy by 14%, leading to a good prediction performance (R2=0.88). According to GART and partial dependence analysis, the B4 band is a crucial characterization factor of algal blooms in the Han River. When the remote sensing band was in the range of B1 ≥0.085 and B4 ≤0.101, the algal density was lower than 0.15 × 107 cells/L, indicating no algal bloom in the downstream of the Han River. When B4 was >0.103 and B1 ≤0.076, algal density was higher than 1 × 107 cells/L and algal blooms were very likely to occur. These findings could provide a scientific reference for diagnosing and predicting large-scale water ecological degradation in similar watersheds.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
范1完成签到,获得积分10
2秒前
5秒前
胡方伟完成签到,获得积分20
13秒前
Ran完成签到 ,获得积分10
14秒前
研友_VZG7GZ应助渔婆采纳,获得10
15秒前
15秒前
Jodie发布了新的文献求助50
17秒前
胡方伟发布了新的文献求助10
17秒前
熙20团宝儿完成签到,获得积分10
18秒前
科研通AI6应助gfbh采纳,获得10
19秒前
Water完成签到,获得积分10
21秒前
21秒前
Seven完成签到 ,获得积分10
23秒前
24秒前
HE完成签到,获得积分10
29秒前
NexusExplorer应助zzj-zjut采纳,获得10
36秒前
36秒前
科研通AI6应助hoy采纳,获得10
36秒前
xiaotianli完成签到,获得积分10
37秒前
希望天下0贩的0应助Wqian采纳,获得10
37秒前
耶椰发布了新的文献求助10
40秒前
郭生完成签到,获得积分10
41秒前
BowieHuang应助HuiYmao采纳,获得10
43秒前
43秒前
zzj-zjut完成签到,获得积分10
44秒前
文静水绿完成签到,获得积分10
45秒前
DNA完成签到,获得积分10
46秒前
容容容完成签到,获得积分10
47秒前
shmorby发布了新的文献求助10
48秒前
渔婆发布了新的文献求助10
49秒前
在水一方应助阳光的梦寒采纳,获得10
51秒前
科研通AI6应助hoy采纳,获得10
52秒前
标致的幼菱完成签到,获得积分10
53秒前
失眠的香菇完成签到 ,获得积分10
54秒前
汉堡包应助专注的水壶采纳,获得10
55秒前
58秒前
59秒前
1分钟前
Felix完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557785
求助须知:如何正确求助?哪些是违规求助? 4642836
关于积分的说明 14669258
捐赠科研通 4584253
什么是DOI,文献DOI怎么找? 2514716
邀请新用户注册赠送积分活动 1488897
关于科研通互助平台的介绍 1459566