Organ-specific Biodosimetry Modeling Using Proteomic Biomarkers of Radiation Exposure

生物剂量学 医学 队列 医疗辐射 辐射暴露 核医学 病理 医学物理学 辐照 内科学 电离辐射 物理 核物理学
作者
Mary Sproull,Yu Fan,Qian Chen,Daoud Meerzaman,Kevin Camphausen
出处
期刊:Radiation Research [Radiation Research Society]
卷期号:202 (4)
标识
DOI:10.1667/rade-24-00092.1
摘要

In future mass casualty medical management scenarios involving radiation injury, medical diagnostics to both identify those who have been exposed and the level of exposure will be needed. As almost all exposures in the field are heterogeneous, determination of degree of exposure and which vital organs have been exposed will be essential for effective medical management. In the current study we sought to characterize novel proteomic biomarkers of radiation exposure and develop exposure and dose prediction algorithms for a variety of exposure paradigms to include uniform total-body exposures, and organ-specific partial-body exposures to only the brain, only the gut and only the lung. C57BL6 female mice received a single total-body irradiation (TBI) of 2, 4 or 8 Gy, 2 and 8 Gy for lung or gut exposures, and 2, 8 or 16 Gy for exposure to only the brain. Plasma was then screened using the SomaScan v4.1 assay for ∼7,000 protein analytes. A subset panel of protein biomarkers demonstrating significant (FDR<0.05 and |logFC|>0.2) changes in expression after radiation exposure was characterized. All proteins were used for feature selection to build 7 different predictive models of radiation exposure using different sample cohort combinations. These models were structured according to practical field considerations to differentiate level of exposure, in addition to identification of organ-specific exposures. Each model algorithm built using a unique sample cohort was validated with a training set of samples and tested with a separate new sample series. The overall predictive accuracy for all models was 100% at the model training level. When tested with reserved samples Model 1 which compared an "exposure" group inclusive of all TBI and organ-specific partial-body exposures in the study vs. control, and Model 2 which differentiated between control, TBI and partials (all organ-specific partial-body exposures) the resulting prediction accuracy was 92.3% and 95.4%, respectively. For identification of organ-specific exposures vs. control, Model 3 (only brain), Model 4 (only gut) and Model 5 (only lung) were developed with predictive accuracies of 78.3%, 88.9% and 94.4%, respectively. Finally, for Models 6 and 7, which differentiated between TBI and separate organ-specific partial-body cohorts, the testing predictive accuracy was 83.1% and 92.3%, respectively. These models represent novel predictive panels of radiation responsive proteomic biomarkers and illustrate the feasibility of development of biodosimetry algorithms with utility for simultaneous classification of total-body, partial-body and organ-specific radiation exposures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
鱼鱼发布了新的文献求助10
刚刚
1秒前
明理如凡完成签到,获得积分10
1秒前
黎行云完成签到,获得积分10
1秒前
lilili发布了新的文献求助10
2秒前
datang完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
李健应助朱锐熠采纳,获得10
4秒前
柔弱雅彤发布了新的文献求助10
4秒前
5秒前
友好灵松完成签到,获得积分10
5秒前
王一博完成签到,获得积分10
6秒前
6秒前
内向的惜芹完成签到,获得积分10
6秒前
7秒前
7秒前
俭朴静竹完成签到,获得积分10
7秒前
香蕉觅云应助abynn采纳,获得10
8秒前
8秒前
8秒前
zzzz完成签到,获得积分10
8秒前
不安的秋白完成签到,获得积分10
8秒前
9秒前
清茶完成签到,获得积分10
9秒前
Owen应助甜心采纳,获得10
10秒前
可爱的函函应助蛋堡采纳,获得10
10秒前
小蘑菇应助柔弱雅彤采纳,获得10
10秒前
10秒前
KYN发布了新的文献求助10
10秒前
科研通AI5应助称心的板栗采纳,获得10
11秒前
自然的早晨完成签到 ,获得积分20
11秒前
星星完成签到,获得积分20
11秒前
11秒前
12秒前
榴莲受众发布了新的文献求助10
12秒前
12秒前
NexusExplorer应助大方的新筠采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5095640
求助须知:如何正确求助?哪些是违规求助? 4308615
关于积分的说明 13424929
捐赠科研通 4135474
什么是DOI,文献DOI怎么找? 2265586
邀请新用户注册赠送积分活动 1268936
关于科研通互助平台的介绍 1204972