Organ-specific Biodosimetry Modeling Using Proteomic Biomarkers of Radiation Exposure

生物剂量学 医学 队列 医疗辐射 辐射暴露 核医学 病理 医学物理学 辐照 内科学 电离辐射 物理 核物理学
作者
Mary Sproull,Yu Fan,Qian Chen,Daoud Meerzaman,Kevin Camphausen
出处
期刊:Radiation Research [BioOne (Radiation Research Society)]
卷期号:202 (4)
标识
DOI:10.1667/rade-24-00092.1
摘要

In future mass casualty medical management scenarios involving radiation injury, medical diagnostics to both identify those who have been exposed and the level of exposure will be needed. As almost all exposures in the field are heterogeneous, determination of degree of exposure and which vital organs have been exposed will be essential for effective medical management. In the current study we sought to characterize novel proteomic biomarkers of radiation exposure and develop exposure and dose prediction algorithms for a variety of exposure paradigms to include uniform total-body exposures, and organ-specific partial-body exposures to only the brain, only the gut and only the lung. C57BL6 female mice received a single total-body irradiation (TBI) of 2, 4 or 8 Gy, 2 and 8 Gy for lung or gut exposures, and 2, 8 or 16 Gy for exposure to only the brain. Plasma was then screened using the SomaScan v4.1 assay for ∼7,000 protein analytes. A subset panel of protein biomarkers demonstrating significant (FDR<0.05 and |logFC|>0.2) changes in expression after radiation exposure was characterized. All proteins were used for feature selection to build 7 different predictive models of radiation exposure using different sample cohort combinations. These models were structured according to practical field considerations to differentiate level of exposure, in addition to identification of organ-specific exposures. Each model algorithm built using a unique sample cohort was validated with a training set of samples and tested with a separate new sample series. The overall predictive accuracy for all models was 100% at the model training level. When tested with reserved samples Model 1 which compared an "exposure" group inclusive of all TBI and organ-specific partial-body exposures in the study vs. control, and Model 2 which differentiated between control, TBI and partials (all organ-specific partial-body exposures) the resulting prediction accuracy was 92.3% and 95.4%, respectively. For identification of organ-specific exposures vs. control, Model 3 (only brain), Model 4 (only gut) and Model 5 (only lung) were developed with predictive accuracies of 78.3%, 88.9% and 94.4%, respectively. Finally, for Models 6 and 7, which differentiated between TBI and separate organ-specific partial-body cohorts, the testing predictive accuracy was 83.1% and 92.3%, respectively. These models represent novel predictive panels of radiation responsive proteomic biomarkers and illustrate the feasibility of development of biodosimetry algorithms with utility for simultaneous classification of total-body, partial-body and organ-specific radiation exposures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
夕荀发布了新的文献求助10
1秒前
1秒前
1秒前
研友_VZG7GZ应助独特的追命采纳,获得30
1秒前
2秒前
布布完成签到 ,获得积分10
2秒前
善良书蝶完成签到 ,获得积分10
2秒前
2秒前
852应助jyh采纳,获得10
3秒前
3秒前
星辰大海应助金木采纳,获得10
3秒前
3秒前
4秒前
无限若云发布了新的文献求助10
4秒前
chenhouhan发布了新的文献求助10
4秒前
李华完成签到 ,获得积分10
5秒前
11发布了新的文献求助10
5秒前
一手灵魂完成签到,获得积分10
5秒前
马里兰州蛙泳胡萝卜完成签到,获得积分10
5秒前
大个应助Mister_CHEN采纳,获得10
5秒前
zz完成签到,获得积分10
6秒前
6秒前
不爱喝咖啡完成签到,获得积分10
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
科研小狗发布了新的文献求助10
7秒前
7秒前
AI完成签到,获得积分10
8秒前
8秒前
科研通AI6应助428采纳,获得10
8秒前
柯南完成签到,获得积分10
8秒前
CL837809486发布了新的文献求助20
8秒前
周雪峰完成签到,获得积分10
8秒前
zz发布了新的文献求助30
9秒前
9秒前
远远完成签到,获得积分10
9秒前
11111完成签到 ,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629758
求助须知:如何正确求助?哪些是违规求助? 4720546
关于积分的说明 14970558
捐赠科研通 4787741
什么是DOI,文献DOI怎么找? 2556498
邀请新用户注册赠送积分活动 1517659
关于科研通互助平台的介绍 1478271