Local symmetrical patterns-based feature extraction model (LSP-FEM) for efficient face recognition

有限元法 特征提取 面子(社会学概念) 模式识别(心理学) 计算机科学 萃取(化学) 人工智能 特征(语言学) 面部识别系统 数据挖掘 工程类 结构工程 化学 色谱法 社会科学 语言学 哲学 社会学
作者
P. Chandra Sekhar Reddy,K. S. R. K. Sarma,Y. Praveen Kumar,R. Deepa,G. R. Sakthidharan,Kseniia Iurevna Usanova,Sudhir Jugran,Muntather Almusawi
出处
期刊:Cogent engineering [Informa]
卷期号:11 (1)
标识
DOI:10.1080/23311916.2024.2390676
摘要

In the applications of computer vision and pattern recognition, facial image processing has been a great issue to focus on for providing efficient solutions for face recognition. General face recognition models can be classified into two types, geometry-based and appearance-based feature models, which deal with global feature data and facial textures respectively. Normally the performance of an adaptive face detection model increases with an increase in the number of training images. In this study, a novel model called Local Symmetrical Patterns based feature extraction model (LSP-FEM) for efficient face recognition was developed. The model incorporates Local Symmetrical Patterns (LSP) to recognize the input human facial samples. Moreover, the proposed LSP-FEM computes the symmetry of each pixel in all eight directions of facial images. For an efficient recognition process, a facial image is considered as a collection of LSP codes. Furthermore, the experimentation was carried out using benchmark datasets called the FERET dataset, Extended Yale-B dataset and Olivetti Research Laboratory (ORL) dataset images. The results show that the accuracy rate of face recognition is higher than that of the existing models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Hello应助科研通管家采纳,获得10
刚刚
华仔应助橘子海采纳,获得10
刚刚
彭于晏应助科研通管家采纳,获得10
刚刚
完美世界应助科研通管家采纳,获得10
1秒前
打打应助科研通管家采纳,获得10
1秒前
邓佳鑫Alan应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
邓佳鑫Alan应助科研通管家采纳,获得10
1秒前
至夏应助科研通管家采纳,获得10
1秒前
chen078完成签到,获得积分10
1秒前
邓佳鑫Alan应助科研通管家采纳,获得10
1秒前
邓佳鑫Alan应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得30
1秒前
邓佳鑫Alan应助科研通管家采纳,获得10
1秒前
在水一方应助nieinei采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
邓佳鑫Alan应助科研通管家采纳,获得10
2秒前
柒月发布了新的文献求助10
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
zhaoman完成签到,获得积分10
2秒前
3秒前
3秒前
千筹发布了新的文献求助30
4秒前
4秒前
lynn完成签到,获得积分10
4秒前
5秒前
哈哈哈发布了新的文献求助30
6秒前
7秒前
壮观复天发布了新的文献求助10
7秒前
syk应助想喝可乐2采纳,获得10
7秒前
chen078发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
xzw完成签到,获得积分10
8秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Analytical Model of Threshold Voltage for Narrow Width Metal Oxide Semiconductor Field Effect Transistors 350
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310444
求助须知:如何正确求助?哪些是违规求助? 2943341
关于积分的说明 8514145
捐赠科研通 2618574
什么是DOI,文献DOI怎么找? 1431211
科研通“疑难数据库(出版商)”最低求助积分说明 664398
邀请新用户注册赠送积分活动 649615