Development and validation of a prognostic model to predict birth weight: individual participant data meta-analysis

出生体重 置信区间 医学 怀孕 荟萃分析 产科 校准 胎龄 人口学 统计 数学 生物 内科学 遗传学 社会学
作者
John Allotey,Lucinda Archer,Kym I E Snell,Dyuti Coomar,Jacques Massé,Line Sletner,Hans Wolf,George Daskalakis,Shigeru Saito,Hannele Laivuori,Akihide Ohkuchi,Hema Mistry,Diane Farrar,Fionnuala Mone,Jun Zhang,Paul T. Seed,Helena Teede,Fabrício da Silva Costa,Athena P. Souka,Richard Hooper,Sergio Ferrazzani,Silvia Salvi,Federico Prefumo,Rinat Gabbay‐Benziv,Chie Nagata,Satoru Takeda,E Sequeira,Olav Lapaire,José Guilherme Cecatti,Katie Morris,Ahmet Baschat,Kjell Å. Salvesen,Luc Smits,Dewi Anggraini,Alice Rumbold,Marleen M. H. J. van Gelder,Arri Coomarasamy,John‏ Kingdom,Seppo Heinonen,Asma Khalil,François Goffinet,Sadia Haqnawaz,Javier Zamora,Richard D. Riley,Shakila Thangaratinam
出处
期刊:BMJ Medicine [BMJ]
卷期号:3 (1): e000784-e000784
标识
DOI:10.1136/bmjmed-2023-000784
摘要

Objective To predict birth weight at various potential gestational ages of delivery based on data routinely available at the first antenatal visit. Design Individual participant data meta-analysis. Data sources Individual participant data of four cohorts (237 228 pregnancies) from the International Prediction of Pregnancy Complications (IPPIC) network dataset. Eligibility criteria for selecting studies Studies in the IPPIC network were identified by searching major databases for studies reporting risk factors for adverse pregnancy outcomes, such as pre-eclampsia, fetal growth restriction, and stillbirth, from database inception to August 2019. Data of four IPPIC cohorts (237 228 pregnancies) from the US (National Institute of Child Health and Human Development, 2018; 233 483 pregnancies), UK (Allen et al, 2017; 1045 pregnancies), Norway (STORK Groruddalen research programme, 2010; 823 pregnancies), and Australia (Rumbold et al, 2006; 1877 pregnancies) were included in the development of the model. Results The IPPIC birth weight model was developed with random intercept regression models with backward elimination for variable selection. Internal-external cross validation was performed to assess the study specific and pooled performance of the model, reported as calibration slope, calibration-in-the-large, and observed versus expected average birth weight ratio. Meta-analysis showed that the apparent performance of the model had good calibration (calibration slope 0.99, 95% confidence interval (CI) 0.88 to 1.10; calibration-in-the-large 44.5 g, −18.4 to 107.3) with an observed versus expected average birth weight ratio of 1.02 (95% CI 0.97 to 1.07). The proportion of variation in birth weight explained by the model (R 2 ) was 46.9% (range 32.7-56.1% in each cohort). On internal-external cross validation, the model showed good calibration and predictive performance when validated in three cohorts with a calibration slope of 0.90 (Allen cohort), 1.04 (STORK Groruddalen cohort), and 1.07 (Rumbold cohort), calibration-in-the-large of −22.3 g (Allen cohort), −33.42 (Rumbold cohort), and 86.4 g (STORK Groruddalen cohort), and observed versus expected ratio of 0.99 (Rumbold cohort), 1.00 (Allen cohort), and 1.03 (STORK Groruddalen cohort); respective pooled estimates were 1.00 (95% CI 0.78 to 1.23; calibration slope), 9.7 g (−154.3 to 173.8; calibration-in-the-large), and 1.00 (0.94 to 1.07; observed v expected ratio). The model predictions were more accurate (smaller mean square error) in the lower end of predicted birth weight, which is important in informing clinical decision making. Conclusions The IPPIC birth weight model allowed birth weight predictions for a range of possible gestational ages. The model explained about 50% of individual variation in birth weights, was well calibrated (especially in babies at high risk of fetal growth restriction and its complications), and showed promising performance in four different populations included in the individual participant data meta-analysis. Further research to examine the generalisability of performance in other countries, settings, and subgroups is required. Trial registration PROSPERO CRD42019135045

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ran完成签到 ,获得积分10
刚刚
CLTTTt完成签到,获得积分10
1秒前
luluyang完成签到 ,获得积分10
2秒前
CY完成签到,获得积分10
3秒前
冷傲机器猫完成签到,获得积分10
7秒前
小橘子完成签到 ,获得积分10
7秒前
蓝景轩辕完成签到 ,获得积分0
7秒前
xiaofeiyan完成签到 ,获得积分10
9秒前
Byla完成签到,获得积分10
13秒前
李rh完成签到 ,获得积分10
14秒前
就月听雨完成签到,获得积分10
19秒前
超哥完成签到,获得积分20
21秒前
634301059完成签到 ,获得积分10
28秒前
丹青完成签到 ,获得积分10
38秒前
jie完成签到 ,获得积分10
40秒前
lily完成签到,获得积分10
44秒前
于洋完成签到 ,获得积分10
49秒前
红领巾klj完成签到 ,获得积分10
54秒前
爱笑的眼睛完成签到,获得积分10
1分钟前
辛勤的大帅完成签到,获得积分10
1分钟前
盼盼完成签到,获得积分10
1分钟前
小海完成签到 ,获得积分10
1分钟前
Damon完成签到 ,获得积分10
1分钟前
等待日记本完成签到 ,获得积分10
1分钟前
端庄代荷完成签到 ,获得积分10
1分钟前
关中人完成签到,获得积分10
1分钟前
帅气的沧海完成签到 ,获得积分10
1分钟前
闻屿完成签到,获得积分10
1分钟前
1分钟前
几米完成签到 ,获得积分10
1分钟前
LXZ完成签到,获得积分10
1分钟前
胖胖玩啊玩完成签到 ,获得积分10
1分钟前
武大帝77完成签到 ,获得积分10
1分钟前
fantexi113完成签到,获得积分0
1分钟前
吃吃货完成签到 ,获得积分10
1分钟前
YOLO完成签到,获得积分10
1分钟前
文献搬运工完成签到 ,获得积分10
1分钟前
violetlishu完成签到 ,获得积分10
1分钟前
1分钟前
虾条完成签到 ,获得积分10
1分钟前
高分求助中
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3121786
求助须知:如何正确求助?哪些是违规求助? 2772143
关于积分的说明 7711148
捐赠科研通 2427514
什么是DOI,文献DOI怎么找? 1289401
科研通“疑难数据库(出版商)”最低求助积分说明 621403
版权声明 600158