亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development and validation of a prognostic model to predict birth weight: individual participant data meta-analysis

出生体重 置信区间 医学 怀孕 荟萃分析 产科 校准 胎龄 人口学 统计 数学 生物 内科学 遗传学 社会学
作者
John Allotey,Lucinda Archer,Kym I E Snell,Dyuti Coomar,Jacques Massé,Line Sletner,Hans Wolf,George Daskalakis,Shigeru Saito,Hannele Laivuori,Akihide Ohkuchi,Hema Mistry,Diane Farrar,Fionnuala Mone,Jun Zhang,Paul T. Seed,Helena Teede,Fabrício da Silva Costa,Athena P. Souka,Richard Hooper,Sergio Ferrazzani,Silvia Salvi,Federico Prefumo,Rinat Gabbay‐Benziv,Chie Nagata,Satoru Takeda,E Sequeira,Olav Lapaire,José Guilherme Cecatti,Katie Morris,Ahmet Baschat,Kjell Å. Salvesen,Luc Smits,Dewi Anggraini,Alice Rumbold,Marleen M. H. J. van Gelder,Arri Coomarasamy,John‏ Kingdom,Seppo Heinonen,Asma Khalil,François Goffinet,Sadia Haqnawaz,Javier Zamora,Richard D. Riley,Shakila Thangaratinam
出处
期刊:BMJ Medicine [BMJ]
卷期号:3 (1): e000784-e000784
标识
DOI:10.1136/bmjmed-2023-000784
摘要

Objective To predict birth weight at various potential gestational ages of delivery based on data routinely available at the first antenatal visit. Design Individual participant data meta-analysis. Data sources Individual participant data of four cohorts (237 228 pregnancies) from the International Prediction of Pregnancy Complications (IPPIC) network dataset. Eligibility criteria for selecting studies Studies in the IPPIC network were identified by searching major databases for studies reporting risk factors for adverse pregnancy outcomes, such as pre-eclampsia, fetal growth restriction, and stillbirth, from database inception to August 2019. Data of four IPPIC cohorts (237 228 pregnancies) from the US (National Institute of Child Health and Human Development, 2018; 233 483 pregnancies), UK (Allen et al, 2017; 1045 pregnancies), Norway (STORK Groruddalen research programme, 2010; 823 pregnancies), and Australia (Rumbold et al, 2006; 1877 pregnancies) were included in the development of the model. Results The IPPIC birth weight model was developed with random intercept regression models with backward elimination for variable selection. Internal-external cross validation was performed to assess the study specific and pooled performance of the model, reported as calibration slope, calibration-in-the-large, and observed versus expected average birth weight ratio. Meta-analysis showed that the apparent performance of the model had good calibration (calibration slope 0.99, 95% confidence interval (CI) 0.88 to 1.10; calibration-in-the-large 44.5 g, −18.4 to 107.3) with an observed versus expected average birth weight ratio of 1.02 (95% CI 0.97 to 1.07). The proportion of variation in birth weight explained by the model (R 2 ) was 46.9% (range 32.7-56.1% in each cohort). On internal-external cross validation, the model showed good calibration and predictive performance when validated in three cohorts with a calibration slope of 0.90 (Allen cohort), 1.04 (STORK Groruddalen cohort), and 1.07 (Rumbold cohort), calibration-in-the-large of −22.3 g (Allen cohort), −33.42 (Rumbold cohort), and 86.4 g (STORK Groruddalen cohort), and observed versus expected ratio of 0.99 (Rumbold cohort), 1.00 (Allen cohort), and 1.03 (STORK Groruddalen cohort); respective pooled estimates were 1.00 (95% CI 0.78 to 1.23; calibration slope), 9.7 g (−154.3 to 173.8; calibration-in-the-large), and 1.00 (0.94 to 1.07; observed v expected ratio). The model predictions were more accurate (smaller mean square error) in the lower end of predicted birth weight, which is important in informing clinical decision making. Conclusions The IPPIC birth weight model allowed birth weight predictions for a range of possible gestational ages. The model explained about 50% of individual variation in birth weights, was well calibrated (especially in babies at high risk of fetal growth restriction and its complications), and showed promising performance in four different populations included in the individual participant data meta-analysis. Further research to examine the generalisability of performance in other countries, settings, and subgroups is required. Trial registration PROSPERO CRD42019135045

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闪闪的梦柏完成签到 ,获得积分10
2秒前
爆米花应助尤玉采纳,获得10
8秒前
孤独且科研关注了科研通微信公众号
13秒前
adkdad完成签到,获得积分10
14秒前
corleeang完成签到 ,获得积分10
15秒前
24秒前
光轮2000发布了新的文献求助10
28秒前
情怀应助西西采纳,获得10
28秒前
28秒前
Mic应助ddt采纳,获得30
32秒前
32秒前
33秒前
kkkkk发布了新的文献求助100
34秒前
小周发布了新的文献求助10
37秒前
37秒前
科研通AI6应助科研通管家采纳,获得10
37秒前
嘿嘿应助科研通管家采纳,获得10
37秒前
Criminology34应助科研通管家采纳,获得10
37秒前
Criminology34应助科研通管家采纳,获得10
37秒前
如意秋珊完成签到 ,获得积分10
37秒前
Criminology34应助科研通管家采纳,获得10
37秒前
37秒前
上官若男应助光轮2000采纳,获得10
38秒前
亮亮发布了新的文献求助10
38秒前
41秒前
lutos完成签到,获得积分10
41秒前
42秒前
Diane发布了新的文献求助10
44秒前
HaonanZhang发布了新的文献求助10
44秒前
45秒前
亮亮完成签到,获得积分20
48秒前
lutos发布了新的文献求助10
48秒前
ceeray23发布了新的文献求助20
51秒前
共享精神应助十字花杀手采纳,获得10
54秒前
闪闪乘风完成签到 ,获得积分10
56秒前
mark完成签到,获得积分10
56秒前
yy完成签到,获得积分10
59秒前
所所应助NI采纳,获得10
1分钟前
1分钟前
Rory完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
ACOG Practice Bulletin: Polycystic Ovary Syndrome 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603213
求助须知:如何正确求助?哪些是违规求助? 4688305
关于积分的说明 14853132
捐赠科研通 4687740
什么是DOI,文献DOI怎么找? 2540464
邀请新用户注册赠送积分活动 1506962
关于科研通互助平台的介绍 1471507