Development and validation of a prognostic model to predict birth weight: individual participant data meta-analysis

出生体重 置信区间 医学 怀孕 荟萃分析 产科 校准 胎龄 人口学 统计 数学 生物 内科学 遗传学 社会学
作者
John Allotey,Lucinda Archer,Kym I E Snell,Dyuti Coomar,Jacques Massé,Line Sletner,Hans Wolf,George Daskalakis,Shigeru Saito,Hannele Laivuori,Akihide Ohkuchi,Hema Mistry,Diane Farrar,Fionnuala Mone,Jun Zhang,Paul T. Seed,Helena Teede,Fabrício da Silva Costa,Athena P. Souka,Richard Hooper,Sergio Ferrazzani,Silvia Salvi,Federico Prefumo,Rinat Gabbay‐Benziv,Chie Nagata,Satoru Takeda,E Sequeira,Olav Lapaire,José Guilherme Cecatti,Katie Morris,Ahmet Baschat,Kjell Å. Salvesen,Luc Smits,Dewi Anggraini,Alice Rumbold,Marleen M. H. J. van Gelder,Arri Coomarasamy,John‏ Kingdom,Seppo Heinonen,Asma Khalil,François Goffinet,Sadia Haqnawaz,Javier Zamora,Richard D. Riley,Shakila Thangaratinam
出处
期刊:BMJ Medicine [BMJ]
卷期号:3 (1): e000784-e000784
标识
DOI:10.1136/bmjmed-2023-000784
摘要

Objective To predict birth weight at various potential gestational ages of delivery based on data routinely available at the first antenatal visit. Design Individual participant data meta-analysis. Data sources Individual participant data of four cohorts (237 228 pregnancies) from the International Prediction of Pregnancy Complications (IPPIC) network dataset. Eligibility criteria for selecting studies Studies in the IPPIC network were identified by searching major databases for studies reporting risk factors for adverse pregnancy outcomes, such as pre-eclampsia, fetal growth restriction, and stillbirth, from database inception to August 2019. Data of four IPPIC cohorts (237 228 pregnancies) from the US (National Institute of Child Health and Human Development, 2018; 233 483 pregnancies), UK (Allen et al, 2017; 1045 pregnancies), Norway (STORK Groruddalen research programme, 2010; 823 pregnancies), and Australia (Rumbold et al, 2006; 1877 pregnancies) were included in the development of the model. Results The IPPIC birth weight model was developed with random intercept regression models with backward elimination for variable selection. Internal-external cross validation was performed to assess the study specific and pooled performance of the model, reported as calibration slope, calibration-in-the-large, and observed versus expected average birth weight ratio. Meta-analysis showed that the apparent performance of the model had good calibration (calibration slope 0.99, 95% confidence interval (CI) 0.88 to 1.10; calibration-in-the-large 44.5 g, −18.4 to 107.3) with an observed versus expected average birth weight ratio of 1.02 (95% CI 0.97 to 1.07). The proportion of variation in birth weight explained by the model (R 2 ) was 46.9% (range 32.7-56.1% in each cohort). On internal-external cross validation, the model showed good calibration and predictive performance when validated in three cohorts with a calibration slope of 0.90 (Allen cohort), 1.04 (STORK Groruddalen cohort), and 1.07 (Rumbold cohort), calibration-in-the-large of −22.3 g (Allen cohort), −33.42 (Rumbold cohort), and 86.4 g (STORK Groruddalen cohort), and observed versus expected ratio of 0.99 (Rumbold cohort), 1.00 (Allen cohort), and 1.03 (STORK Groruddalen cohort); respective pooled estimates were 1.00 (95% CI 0.78 to 1.23; calibration slope), 9.7 g (−154.3 to 173.8; calibration-in-the-large), and 1.00 (0.94 to 1.07; observed v expected ratio). The model predictions were more accurate (smaller mean square error) in the lower end of predicted birth weight, which is important in informing clinical decision making. Conclusions The IPPIC birth weight model allowed birth weight predictions for a range of possible gestational ages. The model explained about 50% of individual variation in birth weights, was well calibrated (especially in babies at high risk of fetal growth restriction and its complications), and showed promising performance in four different populations included in the individual participant data meta-analysis. Further research to examine the generalisability of performance in other countries, settings, and subgroups is required. Trial registration PROSPERO CRD42019135045

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
慕容冷之完成签到,获得积分10
1秒前
1秒前
leo发布了新的文献求助10
2秒前
ont-tnt完成签到,获得积分10
2秒前
sxd完成签到,获得积分10
3秒前
Daisy完成签到 ,获得积分10
3秒前
嘉1612完成签到,获得积分10
4秒前
4秒前
科研通AI2S应助angrymax采纳,获得10
4秒前
落尘发布了新的文献求助10
5秒前
学不懂数学应助小王采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
ROOKIE完成签到,获得积分10
6秒前
6秒前
阿胡发布了新的文献求助10
7秒前
7秒前
SYLH应助wodetaiyangLLL采纳,获得10
8秒前
loey完成签到,获得积分10
8秒前
等待的音响完成签到,获得积分10
8秒前
8秒前
孙非完成签到,获得积分10
8秒前
江小鱼在查文献完成签到,获得积分10
9秒前
静xixi完成签到,获得积分20
10秒前
就是躺完成签到 ,获得积分10
11秒前
11秒前
xcc完成签到,获得积分10
12秒前
目眩完成签到,获得积分10
12秒前
等待的花卷完成签到 ,获得积分10
13秒前
莫言发布了新的文献求助10
14秒前
潇潇完成签到,获得积分10
14秒前
YY-Bubble完成签到,获得积分10
14秒前
lulu8809发布了新的文献求助20
14秒前
lJH发布了新的文献求助10
15秒前
莫言完成签到,获得积分10
18秒前
冷艳的道天完成签到 ,获得积分10
20秒前
Angela完成签到,获得积分10
23秒前
lJH完成签到,获得积分10
23秒前
Popeye完成签到,获得积分10
25秒前
pluto应助李李采纳,获得10
28秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038388
求助须知:如何正确求助?哪些是违规求助? 3576106
关于积分的说明 11374447
捐赠科研通 3305798
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029