Development and validation of a prognostic model to predict birth weight: individual participant data meta-analysis

出生体重 置信区间 医学 怀孕 荟萃分析 产科 校准 胎龄 人口学 统计 数学 生物 内科学 遗传学 社会学
作者
John Allotey,Lucinda Archer,Kym I E Snell,Dyuti Coomar,Jacques Massé,Line Sletner,Hans Wolf,George Daskalakis,Shigeru Saito,Hannele Laivuori,Akihide Ohkuchi,Hema Mistry,Diane Farrar,Fionnuala Mone,Jun Zhang,Paul T. Seed,Helena Teede,Fabrício da Silva Costa,Athena P. Souka,Richard Hooper,Sergio Ferrazzani,Silvia Salvi,Federico Prefumo,Rinat Gabbay‐Benziv,Chie Nagata,Satoru Takeda,E Sequeira,Olav Lapaire,José Guilherme Cecatti,Katie Morris,Ahmet Baschat,Kjell Å. Salvesen,Luc Smits,Dewi Anggraini,Alice Rumbold,Marleen M. H. J. van Gelder,Arri Coomarasamy,John‏ Kingdom,Seppo Heinonen,Asma Khalil,François Goffinet,Sadia Haqnawaz,Javier Zamora,Richard D. Riley,Shakila Thangaratinam
出处
期刊:BMJ Medicine [BMJ]
卷期号:3 (1): e000784-e000784
标识
DOI:10.1136/bmjmed-2023-000784
摘要

Objective To predict birth weight at various potential gestational ages of delivery based on data routinely available at the first antenatal visit. Design Individual participant data meta-analysis. Data sources Individual participant data of four cohorts (237 228 pregnancies) from the International Prediction of Pregnancy Complications (IPPIC) network dataset. Eligibility criteria for selecting studies Studies in the IPPIC network were identified by searching major databases for studies reporting risk factors for adverse pregnancy outcomes, such as pre-eclampsia, fetal growth restriction, and stillbirth, from database inception to August 2019. Data of four IPPIC cohorts (237 228 pregnancies) from the US (National Institute of Child Health and Human Development, 2018; 233 483 pregnancies), UK (Allen et al, 2017; 1045 pregnancies), Norway (STORK Groruddalen research programme, 2010; 823 pregnancies), and Australia (Rumbold et al, 2006; 1877 pregnancies) were included in the development of the model. Results The IPPIC birth weight model was developed with random intercept regression models with backward elimination for variable selection. Internal-external cross validation was performed to assess the study specific and pooled performance of the model, reported as calibration slope, calibration-in-the-large, and observed versus expected average birth weight ratio. Meta-analysis showed that the apparent performance of the model had good calibration (calibration slope 0.99, 95% confidence interval (CI) 0.88 to 1.10; calibration-in-the-large 44.5 g, −18.4 to 107.3) with an observed versus expected average birth weight ratio of 1.02 (95% CI 0.97 to 1.07). The proportion of variation in birth weight explained by the model (R 2 ) was 46.9% (range 32.7-56.1% in each cohort). On internal-external cross validation, the model showed good calibration and predictive performance when validated in three cohorts with a calibration slope of 0.90 (Allen cohort), 1.04 (STORK Groruddalen cohort), and 1.07 (Rumbold cohort), calibration-in-the-large of −22.3 g (Allen cohort), −33.42 (Rumbold cohort), and 86.4 g (STORK Groruddalen cohort), and observed versus expected ratio of 0.99 (Rumbold cohort), 1.00 (Allen cohort), and 1.03 (STORK Groruddalen cohort); respective pooled estimates were 1.00 (95% CI 0.78 to 1.23; calibration slope), 9.7 g (−154.3 to 173.8; calibration-in-the-large), and 1.00 (0.94 to 1.07; observed v expected ratio). The model predictions were more accurate (smaller mean square error) in the lower end of predicted birth weight, which is important in informing clinical decision making. Conclusions The IPPIC birth weight model allowed birth weight predictions for a range of possible gestational ages. The model explained about 50% of individual variation in birth weights, was well calibrated (especially in babies at high risk of fetal growth restriction and its complications), and showed promising performance in four different populations included in the individual participant data meta-analysis. Further research to examine the generalisability of performance in other countries, settings, and subgroups is required. Trial registration PROSPERO CRD42019135045

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
spenley发布了新的文献求助10
刚刚
研友_VZG7GZ应助明理的幻梦采纳,获得10
刚刚
1秒前
1秒前
1秒前
1秒前
2秒前
爬山虎发布了新的文献求助10
2秒前
烂漫的筮发布了新的文献求助10
2秒前
tangpc完成签到,获得积分10
3秒前
张海桐完成签到,获得积分10
3秒前
3秒前
4秒前
向日葵完成签到,获得积分10
4秒前
zhoududu完成签到,获得积分10
4秒前
4秒前
水晶鞋小兔头完成签到,获得积分10
4秒前
今后应助小蚊子采纳,获得10
4秒前
美好乌冬面完成签到,获得积分10
4秒前
娜娜子发布了新的文献求助30
5秒前
我是老大应助最溜皮大爷采纳,获得10
5秒前
勤劳茗完成签到,获得积分20
5秒前
wj发布了新的文献求助10
6秒前
搜集达人应助彩色的诗桃采纳,获得10
6秒前
求知发布了新的文献求助100
6秒前
Sylvia发布了新的文献求助10
6秒前
悟空最可爱完成签到,获得积分20
7秒前
ding应助科研通管家采纳,获得10
7秒前
7秒前
小二郎应助科研通管家采纳,获得30
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
闫雪艳完成签到 ,获得积分10
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
乐乐应助科研通管家采纳,获得30
7秒前
英俊的铭应助北洛采纳,获得10
7秒前
完美世界应助科研通管家采纳,获得10
8秒前
Akim应助科研通管家采纳,获得10
8秒前
李爱国应助木木采纳,获得10
8秒前
上官若男应助科研通管家采纳,获得10
8秒前
ding应助科研通管家采纳,获得10
8秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970802
求助须知:如何正确求助?哪些是违规求助? 3515474
关于积分的说明 11178714
捐赠科研通 3250627
什么是DOI,文献DOI怎么找? 1795390
邀请新用户注册赠送积分活动 875818
科研通“疑难数据库(出版商)”最低求助积分说明 805183