Refocus the Attention for Parameter-Efficient Thermal Infrared Object Tracking

红外线的 热红外 对象(语法) 跟踪(教育) 热的 计算机视觉 计算机科学 人工智能 心理学 光学 物理 气象学 教育学
作者
Simiao Lai,Chang Liu,Dong Wang,Huchuan Lu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (5): 9538-9549 被引量:9
标识
DOI:10.1109/tnnls.2024.3420928
摘要

Introducing deep trackers to thermal infrared (TIR) tracking is hampered by the scarcity of large training datasets. To alleviate the predicament, a common approach is full fine-tuning (FFT) based on pretrained RGB parameters. Nevertheless, due to its inefficient training pattern and representation collapse risk, some parameter-efficient fine-tuning (PEFT) alternatives have been promoted recently. However, the existing PEFT algorithms typically follow a bottom-up way, where their attention solely relies on the input and lacks the capability of task-guided top-down attention, which provides the task-relevant representation such as the human visual perception system. In this article, we introduce ReFocus, a new PEFT method that adapts the pretrained RGB foundation tracking model to the downstream TIR tracking task through the guidance of high-level task-specific signals in a top-down attention manner. By freezing the entire foundation model and only training query-guided feature selection and top-down blocks, ReFocus achieves state-of-the-art (SOTA) TIR tracking performance while keeping training efficiency. Extensive experiments on five TIR tracking benchmarks demonstrate that ReFocus significantly improves the performance of the foundation tracker. Besides, further ablation studies show the effectiveness and flexible adaptability of the proposed method to lighter foundation models and different tracking frameworks. Compared to FFT and other bottom-up PEFT paradigms, such as head probe, low-rank adaptation (LoRA), and adapter, our method achieves comparable or superior performance with fewer training parameters and reveals the advantage of learning stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐观夜春发布了新的文献求助10
1秒前
1秒前
ypppp发布了新的文献求助10
2秒前
黑猫黑猫发布了新的文献求助10
3秒前
熊大完成签到,获得积分10
3秒前
酷酷怀绿发布了新的文献求助10
3秒前
落后的凝梦完成签到 ,获得积分10
3秒前
4秒前
斯文败类应助空空采纳,获得10
4秒前
华仔应助琉光如喻采纳,获得10
4秒前
Ming完成签到,获得积分10
5秒前
5秒前
在水一方应助任性映秋采纳,获得10
5秒前
无限水杯发布了新的文献求助30
6秒前
6秒前
才染发布了新的文献求助10
6秒前
桐桐应助汉堡包采纳,获得10
6秒前
7秒前
7秒前
陈爽er完成签到,获得积分10
8秒前
桐桐应助as_eichi采纳,获得10
8秒前
小雯钱来发布了新的文献求助10
9秒前
9秒前
Jasper应助Oooner采纳,获得10
9秒前
9秒前
高是个科研狗完成签到 ,获得积分10
9秒前
9秒前
田様应助maojin采纳,获得30
10秒前
情怀应助anliu采纳,获得30
10秒前
久久艳阳天完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
坤坤发布了新的文献求助30
11秒前
12秒前
shineshine发布了新的文献求助10
12秒前
13秒前
14秒前
123完成签到 ,获得积分10
14秒前
ikkaisa发布了新的文献求助10
14秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5442411
求助须知:如何正确求助?哪些是违规求助? 4552693
关于积分的说明 14237826
捐赠科研通 4473934
什么是DOI,文献DOI怎么找? 2451764
邀请新用户注册赠送积分活动 1442609
关于科研通互助平台的介绍 1418551