Refocus the Attention for Parameter-Efficient Thermal Infrared Object Tracking

红外线的 热红外 对象(语法) 跟踪(教育) 热的 计算机视觉 计算机科学 人工智能 心理学 光学 物理 气象学 教育学
作者
Simiao Lai,Chang Liu,Dong Wang,Huchuan Lu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (5): 9538-9549 被引量:9
标识
DOI:10.1109/tnnls.2024.3420928
摘要

Introducing deep trackers to thermal infrared (TIR) tracking is hampered by the scarcity of large training datasets. To alleviate the predicament, a common approach is full fine-tuning (FFT) based on pretrained RGB parameters. Nevertheless, due to its inefficient training pattern and representation collapse risk, some parameter-efficient fine-tuning (PEFT) alternatives have been promoted recently. However, the existing PEFT algorithms typically follow a bottom-up way, where their attention solely relies on the input and lacks the capability of task-guided top-down attention, which provides the task-relevant representation such as the human visual perception system. In this article, we introduce ReFocus, a new PEFT method that adapts the pretrained RGB foundation tracking model to the downstream TIR tracking task through the guidance of high-level task-specific signals in a top-down attention manner. By freezing the entire foundation model and only training query-guided feature selection and top-down blocks, ReFocus achieves state-of-the-art (SOTA) TIR tracking performance while keeping training efficiency. Extensive experiments on five TIR tracking benchmarks demonstrate that ReFocus significantly improves the performance of the foundation tracker. Besides, further ablation studies show the effectiveness and flexible adaptability of the proposed method to lighter foundation models and different tracking frameworks. Compared to FFT and other bottom-up PEFT paradigms, such as head probe, low-rank adaptation (LoRA), and adapter, our method achieves comparable or superior performance with fewer training parameters and reveals the advantage of learning stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2903827997关注了科研通微信公众号
刚刚
雨后蜻蜓完成签到,获得积分10
1秒前
alna完成签到,获得积分10
1秒前
1秒前
asdfqwer完成签到,获得积分0
2秒前
万能图书馆应助KhalilHao采纳,获得10
2秒前
kongshuai发布了新的文献求助10
3秒前
科研小白完成签到 ,获得积分10
3秒前
柳觅夏完成签到,获得积分10
4秒前
星辰大海应助niu采纳,获得10
4秒前
ss完成签到,获得积分10
4秒前
lq完成签到 ,获得积分10
4秒前
小西完成签到 ,获得积分10
4秒前
Scherbatsky发布了新的文献求助10
5秒前
5秒前
nowss完成签到,获得积分10
5秒前
MHY发布了新的文献求助10
6秒前
月倚樱落时完成签到,获得积分10
6秒前
能干妙竹发布了新的文献求助10
6秒前
畅快的胡萝卜完成签到,获得积分10
6秒前
星辰大海应助文艺的毛巾采纳,获得10
7秒前
活力的秋灵完成签到,获得积分10
7秒前
钱钱完成签到,获得积分10
7秒前
keke完成签到 ,获得积分10
8秒前
9秒前
hobowei完成签到 ,获得积分10
9秒前
刘艺娜完成签到,获得积分10
9秒前
nicole_Jones发布了新的文献求助10
9秒前
10秒前
山野桃饼完成签到,获得积分10
11秒前
小仙女完成签到,获得积分10
11秒前
12秒前
长柏完成签到 ,获得积分10
12秒前
LY完成签到,获得积分10
12秒前
Q42完成签到,获得积分10
13秒前
专注的明轩完成签到 ,获得积分10
14秒前
KhalilHao发布了新的文献求助10
14秒前
李佳洲发布了新的文献求助10
15秒前
科研通AI6应助汤锐采纳,获得10
15秒前
司徒不二完成签到,获得积分0
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5401990
求助须知:如何正确求助?哪些是违规求助? 4520650
关于积分的说明 14080494
捐赠科研通 4434084
什么是DOI,文献DOI怎么找? 2434382
邀请新用户注册赠送积分活动 1426601
关于科研通互助平台的介绍 1405349