Refocus the Attention for Parameter-Efficient Thermal Infrared Object Tracking

红外线的 热红外 对象(语法) 跟踪(教育) 热的 计算机视觉 计算机科学 人工智能 心理学 光学 物理 气象学 教育学
作者
Simiao Lai,Chang Liu,Dong Wang,Huchuan Lu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (5): 9538-9549 被引量:9
标识
DOI:10.1109/tnnls.2024.3420928
摘要

Introducing deep trackers to thermal infrared (TIR) tracking is hampered by the scarcity of large training datasets. To alleviate the predicament, a common approach is full fine-tuning (FFT) based on pretrained RGB parameters. Nevertheless, due to its inefficient training pattern and representation collapse risk, some parameter-efficient fine-tuning (PEFT) alternatives have been promoted recently. However, the existing PEFT algorithms typically follow a bottom-up way, where their attention solely relies on the input and lacks the capability of task-guided top-down attention, which provides the task-relevant representation such as the human visual perception system. In this article, we introduce ReFocus, a new PEFT method that adapts the pretrained RGB foundation tracking model to the downstream TIR tracking task through the guidance of high-level task-specific signals in a top-down attention manner. By freezing the entire foundation model and only training query-guided feature selection and top-down blocks, ReFocus achieves state-of-the-art (SOTA) TIR tracking performance while keeping training efficiency. Extensive experiments on five TIR tracking benchmarks demonstrate that ReFocus significantly improves the performance of the foundation tracker. Besides, further ablation studies show the effectiveness and flexible adaptability of the proposed method to lighter foundation models and different tracking frameworks. Compared to FFT and other bottom-up PEFT paradigms, such as head probe, low-rank adaptation (LoRA), and adapter, our method achieves comparable or superior performance with fewer training parameters and reveals the advantage of learning stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
牛牛的牛牛完成签到 ,获得积分10
刚刚
1秒前
旺仔先生完成签到,获得积分10
1秒前
体贴擎完成签到,获得积分10
2秒前
喜悦幻巧完成签到,获得积分10
2秒前
2秒前
无奈敏发布了新的文献求助10
2秒前
雪山飞虹发布了新的文献求助10
3秒前
南滨发布了新的文献求助30
3秒前
张钰完成签到 ,获得积分10
4秒前
Silverexile完成签到,获得积分10
6秒前
6秒前
烟花应助aa采纳,获得10
7秒前
拼搏的桐发布了新的文献求助10
7秒前
8秒前
8秒前
打打应助鱼猫采纳,获得10
9秒前
Ellis发布了新的文献求助20
9秒前
丘比特应助雪山飞虹采纳,获得10
9秒前
P16完成签到,获得积分10
9秒前
9秒前
酷波er应助rrrrr采纳,获得10
10秒前
zhaoying发布了新的文献求助10
10秒前
zhi发布了新的文献求助10
12秒前
顾越发布了新的文献求助10
12秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
悦子的猫酒馆完成签到,获得积分20
14秒前
Dskelf完成签到,获得积分10
15秒前
子清发布了新的文献求助10
15秒前
啤酒半斤发布了新的文献求助10
15秒前
喜宝完成签到 ,获得积分10
16秒前
17秒前
18秒前
Jasmine完成签到,获得积分10
19秒前
19秒前
酷波er应助科研通管家采纳,获得10
19秒前
斯文败类应助科研通管家采纳,获得10
19秒前
SciGPT应助科研通管家采纳,获得10
20秒前
wanci应助科研通管家采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424419
求助须知:如何正确求助?哪些是违规求助? 4538767
关于积分的说明 14163869
捐赠科研通 4455739
什么是DOI,文献DOI怎么找? 2443880
邀请新用户注册赠送积分活动 1435011
关于科研通互助平台的介绍 1412337