Refocus the Attention for Parameter-Efficient Thermal Infrared Object Tracking

红外线的 热红外 对象(语法) 跟踪(教育) 热的 计算机视觉 计算机科学 人工智能 心理学 光学 物理 气象学 教育学
作者
Simiao Lai,Chang Liu,Dong Wang,Huchuan Lu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:3
标识
DOI:10.1109/tnnls.2024.3420928
摘要

Introducing deep trackers to thermal infrared (TIR) tracking is hampered by the scarcity of large training datasets. To alleviate the predicament, a common approach is full fine-tuning (FFT) based on pretrained RGB parameters. Nevertheless, due to its inefficient training pattern and representation collapse risk, some parameter-efficient fine-tuning (PEFT) alternatives have been promoted recently. However, the existing PEFT algorithms typically follow a bottom-up way, where their attention solely relies on the input and lacks the capability of task-guided top-down attention, which provides the task-relevant representation such as the human visual perception system. In this article, we introduce ReFocus, a new PEFT method that adapts the pretrained RGB foundation tracking model to the downstream TIR tracking task through the guidance of high-level task-specific signals in a top-down attention manner. By freezing the entire foundation model and only training query-guided feature selection and top-down blocks, ReFocus achieves state-of-the-art (SOTA) TIR tracking performance while keeping training efficiency. Extensive experiments on five TIR tracking benchmarks demonstrate that ReFocus significantly improves the performance of the foundation tracker. Besides, further ablation studies show the effectiveness and flexible adaptability of the proposed method to lighter foundation models and different tracking frameworks. Compared to FFT and other bottom-up PEFT paradigms, such as head probe, low-rank adaptation (LoRA), and adapter, our method achieves comparable or superior performance with fewer training parameters and reveals the advantage of learning stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
牛牛超人发布了新的文献求助10
刚刚
kkkkk发布了新的文献求助10
2秒前
4秒前
scabbard24发布了新的文献求助10
4秒前
5秒前
6秒前
sy发布了新的文献求助10
9秒前
dyvdyvaass发布了新的文献求助10
9秒前
沧笙踏歌应助Stroeve采纳,获得10
9秒前
英姑应助LXY采纳,获得10
10秒前
XXH完成签到 ,获得积分10
13秒前
搞怪莫茗应助抚仙采纳,获得30
16秒前
一川完成签到,获得积分10
16秒前
打打应助TRISTE采纳,获得30
18秒前
18秒前
曦之南。完成签到,获得积分10
19秒前
慕青应助雨晴采纳,获得10
19秒前
迷你的晓蓝完成签到,获得积分10
20秒前
吴南宛应助炉石鱼采纳,获得10
21秒前
22秒前
25秒前
LXY发布了新的文献求助10
26秒前
量子星尘发布了新的文献求助10
26秒前
LF-Scie发布了新的文献求助10
28秒前
wanci应助祭礼之龙采纳,获得10
30秒前
30秒前
31秒前
xiaofeiyan发布了新的文献求助10
32秒前
Issac关注了科研通微信公众号
32秒前
33秒前
自觉秋完成签到,获得积分10
35秒前
好运连连完成签到 ,获得积分10
35秒前
蔡蔡发布了新的文献求助10
35秒前
刚刚发布了新的文献求助10
36秒前
雨晴发布了新的文献求助10
36秒前
38秒前
38秒前
劣根发布了新的文献求助10
39秒前
40秒前
与山完成签到,获得积分20
41秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956715
求助须知:如何正确求助?哪些是违规求助? 3502823
关于积分的说明 11110134
捐赠科研通 3233745
什么是DOI,文献DOI怎么找? 1787489
邀请新用户注册赠送积分活动 870685
科研通“疑难数据库(出版商)”最低求助积分说明 802152