Current strategies to address data scarcity in artificial intelligence-based drug discovery: A comprehensive review

计算机科学 药物发现 稀缺 数据科学 电流(流体) 人工智能 机器学习 生物信息学 工程类 生物 电气工程 经济 微观经济学
作者
Amit Gangwal,Azim Ansari,Iqrar Ahmad,Abul Kalam Azad,Wan Mohd Azizi Wan Sulaiman
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:179: 108734-108734 被引量:7
标识
DOI:10.1016/j.compbiomed.2024.108734
摘要

Artificial intelligence (AI) has played a vital role in computer-aided drug design (CADD). This development has been further accelerated with the increasing use of machine learning (ML), mainly deep learning (DL), and computing hardware and software advancements. As a result, initial doubts about the application of AI in drug discovery have been dispelled, leading to significant benefits in medicinal chemistry. At the same time, it is crucial to recognize that AI is still in its infancy and faces a few limitations that need to be addressed to harness its full potential in drug discovery. Some notable limitations are insufficient, unlabeled, and non-uniform data, the resemblance of some AI-generated molecules with existing molecules, unavailability of inadequate benchmarks, intellectual property rights (IPRs) related hurdles in data sharing, poor understanding of biology, focus on proxy data and ligands, lack of holistic methods to represent input (molecular structures) to prevent pre-processing of input molecules (feature engineering), etc. The major component in AI infrastructure is input data, as most of the successes of AI-driven efforts to improve drug discovery depend on the quality and quantity of data, used to train and test AI algorithms, besides a few other factors. Additionally, data-gulping DL approaches, without sufficient data, may collapse to live up to their promise. Current literature suggests a few methods, to certain extent, effectively handle low data for better output from the AI models in the context of drug discovery. These are transferring learning (TL), active learning (AL), single or one-shot learning (OSL), multi-task learning (MTL), data augmentation (DA), data synthesis (DS), etc. One different method, which enables sharing of proprietary data on a common platform (without compromising data privacy) to train ML model, is federated learning (FL). In this review, we compare and discuss these methods, their recent applications, and limitations while modeling small molecule data to get the improved output of AI methods in drug discovery. Article also sums up some other novel methods to handle inadequate data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助乐乐采纳,获得10
1秒前
1秒前
小蘑菇应助孟祥勤采纳,获得10
2秒前
摆烂昊完成签到,获得积分20
3秒前
4秒前
咖啡味椰果完成签到 ,获得积分10
4秒前
笑破果果完成签到 ,获得积分10
4秒前
yzm完成签到,获得积分10
6秒前
英俊的铭应助四喜采纳,获得10
6秒前
6秒前
等待寄云完成签到 ,获得积分10
7秒前
鹿世倌完成签到 ,获得积分10
9秒前
9秒前
9秒前
Mr.Young发布了新的文献求助10
10秒前
jin完成签到 ,获得积分20
10秒前
10秒前
S8关闭了S8文献求助
11秒前
欢呼又夏发布了新的文献求助10
11秒前
周晴完成签到 ,获得积分10
11秒前
千宝完成签到,获得积分10
11秒前
12秒前
陈乔完成签到,获得积分10
12秒前
负责难破发布了新的文献求助10
13秒前
13秒前
孟祥勤发布了新的文献求助10
14秒前
15秒前
17秒前
SciGPT应助dz采纳,获得10
18秒前
Mse发布了新的文献求助10
19秒前
sine_mora发布了新的文献求助10
19秒前
zzz完成签到,获得积分10
19秒前
时尚鹏涛发布了新的文献求助10
19秒前
负责难破完成签到,获得积分10
21秒前
小二郎应助Jeffery426采纳,获得20
21秒前
wangayting完成签到,获得积分10
21秒前
22秒前
嘎嘎发完成签到,获得积分10
22秒前
冰西瓜完成签到 ,获得积分10
22秒前
无私啤酒关注了科研通微信公众号
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312036
求助须知:如何正确求助?哪些是违规求助? 2944707
关于积分的说明 8521005
捐赠科研通 2620360
什么是DOI,文献DOI怎么找? 1432797
科研通“疑难数据库(出版商)”最低求助积分说明 664762
邀请新用户注册赠送积分活动 650092