亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Personalized Federated Continual Learning via Multi-Granularity Prompt

粒度 计算机科学 计算机体系结构 人工智能 操作系统
作者
Hao Yu,Xin Yang,Xin Gao,Yan Kang,Hao Wang,Junbo Zhang,Tianrui Li
标识
DOI:10.1145/3637528.3671948
摘要

Personalized Federated Continual Learning (PFCL) is a new practical scenario that poses greater challenges in sharing and personalizing knowledge. PFCL not only relies on knowledge fusion for server aggregation at the global spatial-temporal perspective but also needs model improvement for each client according to the local requirements. Existing methods, whether in Personalized Federated Learning (PFL) or Federated Continual Learning (FCL), have overlooked the multi-granularity representation of knowledge, which can be utilized to overcome Spatial-Temporal Catastrophic Forgetting (STCF) and adopt generalized knowledge to itself by coarse-to-fine human cognitive mechanisms. Moreover, it allows more effectively to personalized shared knowledge, thus serving its own purpose. To this end, we propose a novel concept called multi-granularity prompt, i.e., coarse-grained global prompt acquired through the common model learning process, and fine-grained local prompt used to personalize the generalized representation. The former focuses on efficiently transferring shared global knowledge without spatial forgetting, and the latter emphasizes specific learning of personalized local knowledge to overcome temporal forgetting. In addition, we design a selective prompt fusion mechanism for aggregating knowledge of global prompts distilled from different clients. By the exclusive fusion of coarse-grained knowledge, we achieve the transmission and refinement of common knowledge among clients, further enhancing the performance of personalization. Extensive experiments demonstrate the effectiveness of the proposed method in addressing STCF as well as improving personalized performance. Our code now is available at https://github.com/SkyOfBeginning/FedMGP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
14秒前
wwe完成签到,获得积分10
40秒前
CodeCraft应助糊涂的清醒者采纳,获得10
42秒前
49秒前
54秒前
1分钟前
烟花应助nicol.z采纳,获得10
1分钟前
Eatanicecube完成签到,获得积分10
1分钟前
1分钟前
nicol.z发布了新的文献求助10
1分钟前
Jasmineyfz完成签到 ,获得积分10
2分钟前
2分钟前
Enisbao完成签到,获得积分10
2分钟前
Enisbao发布了新的文献求助10
2分钟前
2分钟前
朴素的山蝶完成签到,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
ukz37752完成签到,获得积分10
4分钟前
4分钟前
脑洞疼应助科研通管家采纳,获得10
5分钟前
猪仔5号完成签到 ,获得积分10
6分钟前
6分钟前
荆棘鸟发布了新的文献求助10
7分钟前
斯文败类应助科研通管家采纳,获得10
7分钟前
drhwang完成签到,获得积分10
8分钟前
8分钟前
笨笨亦凝发布了新的文献求助30
8分钟前
笨笨亦凝完成签到,获得积分20
9分钟前
牧沛凝完成签到 ,获得积分10
9分钟前
酷波er应助科研通管家采纳,获得10
9分钟前
英姑应助科研通管家采纳,获得10
9分钟前
kakuna发布了新的文献求助40
9分钟前
9分钟前
StevenWu1发布了新的文献求助10
10分钟前
英姑应助ddd采纳,获得10
10分钟前
10分钟前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Homolytic deamination of amino-alcohols 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Essentials of Performance Analysis in Sport 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3729118
求助须知:如何正确求助?哪些是违规求助? 3274295
关于积分的说明 9984852
捐赠科研通 2989521
什么是DOI,文献DOI怎么找? 1640551
邀请新用户注册赠送积分活动 779249
科研通“疑难数据库(出版商)”最低求助积分说明 748141