Realization of Yin–Yang kagome bands and tunable quantum anomalous Hall effect in monolayer V3Cl6

单层 实现(概率) 量子霍尔效应 凝聚态物理 量子反常霍尔效应 物理 霍尔效应 材料科学 量子 纳米技术 量子力学 数学 磁场 统计
作者
Fanzheng Chen,Jiajun Lu,Xiuwen Zhao,Guichao Hu,Xiaobo Yuan,Junfeng Ren
出处
期刊:Applied Physics Letters [American Institute of Physics]
卷期号:125 (4) 被引量:4
标识
DOI:10.1063/5.0221779
摘要

Kagome materials serve as crucial platforms for investigating the quantum anomalous Hall effect (QAHE) due to the presence of kagome bands in their electronic structures. However, despite the theoretical predictions being proposed, kagome band material realizations have been limited. In this work, through tight-binding (TB) model analysis, by setting the nearest-neighbor hopping integrals with opposite signs, we propose a Yin–Yang kagome band structure characterized by two stable enantiomorphic kagome bands. Furthermore, we design a monolayer V3Cl6 to confirm the TB model. Three V atoms are located in different coordination environments in V3Cl6, so opposite signs of the hopping integrals between two of their orthogonal d orbitals can be achieved, which is the key to realize Yin–Yang kagome band structures. The calculated band structures obtained from first principles are consistent with those from the TB model. Additionally, we find that the two enantiomorphic flat bands in monolayer V3Cl6 possess opposite Chern number after spin–orbit coupling is considered, which can also be confirmed from symmetry index analysis. The Chern numbers as well as the topological properties can be modulated by doping hole or adjusting the magnetization directions, so the QAHE can be tuned in monolayer V3Cl6. Our results provide a practicable pathway for realizing Yin–Yang kagome band structures and achieving tunable QAHE in them.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
脑洞疼应助内向连碧采纳,获得10
3秒前
小垃圾关注了科研通微信公众号
3秒前
SYLH应助liiiii采纳,获得10
4秒前
wanci应助喜悦雪莲采纳,获得10
4秒前
科目三应助一颗椰子糖耶采纳,获得10
5秒前
Hello应助研友_Zr2l4Z采纳,获得10
6秒前
博修发布了新的文献求助10
7秒前
7秒前
9秒前
10秒前
sc30发布了新的文献求助10
10秒前
爱静静完成签到,获得积分0
10秒前
10秒前
麦子发布了新的文献求助10
12秒前
风清扬应助博修采纳,获得10
12秒前
13秒前
伴读小书童完成签到,获得积分10
13秒前
13秒前
13秒前
一颗小可可完成签到,获得积分20
15秒前
nanjiren发布了新的文献求助10
15秒前
鳗鱼剑身发布了新的文献求助10
15秒前
Gao发布了新的文献求助10
16秒前
研友_Zr2l4Z发布了新的文献求助10
16秒前
深情安青应助失眠问晴采纳,获得10
16秒前
喜悦雪莲发布了新的文献求助10
17秒前
xlli00完成签到,获得积分10
18秒前
19秒前
共享精神应助xlli00采纳,获得10
21秒前
21秒前
23秒前
23秒前
23秒前
25秒前
25秒前
26秒前
27秒前
mingming发布了新的文献求助10
27秒前
iNk应助monned采纳,获得10
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989711
求助须知:如何正确求助?哪些是违规求助? 3531864
关于积分的说明 11255235
捐赠科研通 3270505
什么是DOI,文献DOI怎么找? 1804983
邀请新用户注册赠送积分活动 882157
科研通“疑难数据库(出版商)”最低求助积分说明 809176