A probabilistic prediction model based on stacking ensemble learning for completion time in flexible shop-floor

堆积 概率逻辑 集成学习 计算机科学 人工智能 机器学习 化学 有机化学
作者
Xiao Chang,Xiaoliang Jia,Fan Chen
标识
DOI:10.1177/09544054241277581
摘要

Completion time prediction is crucial for analyzing and monitoring the execution of shop-floor’s production planning. However, predicting completion time is still challenging because production process has high uncertainty and influenced by the interaction of various factors. To address above challenges, the stacking ensemble learning based probabilistic prediction model (SEL-PP) to predict completion time is developed. Thereinto, fully connected neural network (FCNN), random forest (RF) and gradient boosted regression tree (GBRT) are used as the first-level base learner to exhibit better nonlinear characteristics, and quantile regression neural network (QRNN) is used as the second-level meta-learner to rectify the mistakes in the prediction of the base learner. After that, the kernel density estimation (KDE) is employed for achieving probability density prediction of completion time. Moreover, particle swarm optimization (PSO) is adopted for key parameter optimization of SEL-PP. Taking the aircraft overhaul shop-floor as an example, a case study is constructed to demonstrate the feasibility and effectiveness of SEL-PP. Through comparing the results, it indicates that the SEL-PP model has better performance in predicting completion time of flexible shop-floor.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助Lxxixixi采纳,获得10
刚刚
yl发布了新的文献求助10
1秒前
拉长的秋白完成签到 ,获得积分10
2秒前
2秒前
2秒前
怡春院李老鸨完成签到,获得积分10
2秒前
科研通AI6应助迅速的宛海采纳,获得10
3秒前
3秒前
4秒前
bingo完成签到,获得积分10
4秒前
彭于晏应助zgd采纳,获得10
4秒前
乌冬面发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
番茄爱喝粥完成签到,获得积分10
8秒前
8秒前
livian发布了新的文献求助10
8秒前
DL发布了新的文献求助10
9秒前
9秒前
言西早完成签到 ,获得积分10
10秒前
WWWUBING完成签到,获得积分10
10秒前
10秒前
红柚完成签到,获得积分10
12秒前
12秒前
李爱国应助tdtk采纳,获得10
12秒前
Lxxixixi发布了新的文献求助10
12秒前
刘凯完成签到,获得积分10
13秒前
科研通AI6应助yl采纳,获得10
13秒前
CR7应助乌冬面采纳,获得20
13秒前
13秒前
13秒前
小白发布了新的文献求助20
13秒前
14秒前
就这样完成签到 ,获得积分10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
14秒前
彭于晏应助科研通管家采纳,获得10
14秒前
大个应助科研通管家采纳,获得10
14秒前
英姑应助科研通管家采纳,获得10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion 300
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604564
求助须知:如何正确求助?哪些是违规求助? 4012871
关于积分的说明 12425263
捐赠科研通 3693482
什么是DOI,文献DOI怎么找? 2036342
邀请新用户注册赠送积分活动 1069364
科研通“疑难数据库(出版商)”最低求助积分说明 953871