重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

A probabilistic prediction model based on stacking ensemble learning for completion time in flexible shop-floor

堆积 概率逻辑 集成学习 计算机科学 人工智能 机器学习 化学 有机化学
作者
Xiao Chang,Xiaoliang Jia,Fan Chen
标识
DOI:10.1177/09544054241277581
摘要

Completion time prediction is crucial for analyzing and monitoring the execution of shop-floor’s production planning. However, predicting completion time is still challenging because production process has high uncertainty and influenced by the interaction of various factors. To address above challenges, the stacking ensemble learning based probabilistic prediction model (SEL-PP) to predict completion time is developed. Thereinto, fully connected neural network (FCNN), random forest (RF) and gradient boosted regression tree (GBRT) are used as the first-level base learner to exhibit better nonlinear characteristics, and quantile regression neural network (QRNN) is used as the second-level meta-learner to rectify the mistakes in the prediction of the base learner. After that, the kernel density estimation (KDE) is employed for achieving probability density prediction of completion time. Moreover, particle swarm optimization (PSO) is adopted for key parameter optimization of SEL-PP. Taking the aircraft overhaul shop-floor as an example, a case study is constructed to demonstrate the feasibility and effectiveness of SEL-PP. Through comparing the results, it indicates that the SEL-PP model has better performance in predicting completion time of flexible shop-floor.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Morssax完成签到,获得积分10
刚刚
刚刚
浮游应助zhuzhu采纳,获得10
刚刚
稳重盼夏发布了新的文献求助10
1秒前
wanci应助碧蓝的往事采纳,获得10
1秒前
1秒前
1秒前
1秒前
疯子零零完成签到,获得积分10
2秒前
眯眯眼的语雪完成签到,获得积分10
2秒前
3秒前
WY完成签到,获得积分10
3秒前
STEAD完成签到,获得积分10
5秒前
DrPanda完成签到,获得积分10
5秒前
小太阳发布了新的文献求助10
5秒前
研友_VZG7GZ应助Penn采纳,获得10
5秒前
6秒前
无花果应助眯眯眼的语雪采纳,获得10
6秒前
卡卡罗特完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
6秒前
aaaa完成签到,获得积分10
7秒前
9秒前
zhouyong完成签到,获得积分10
9秒前
浮游应助Literaturecome采纳,获得10
10秒前
masterwill发布了新的文献求助10
10秒前
lz发布了新的文献求助10
11秒前
12秒前
yafei完成签到 ,获得积分10
12秒前
dahua发布了新的文献求助30
12秒前
13秒前
13秒前
13秒前
13秒前
珂颜堂AI应助zq采纳,获得10
13秒前
Carsen完成签到,获得积分10
14秒前
14秒前
15秒前
大帅哥发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5465838
求助须知:如何正确求助?哪些是违规求助? 4570083
关于积分的说明 14322455
捐赠科研通 4496549
什么是DOI,文献DOI怎么找? 2463392
邀请新用户注册赠送积分活动 1452295
关于科研通互助平台的介绍 1427497