A probabilistic prediction model based on stacking ensemble learning for completion time in flexible shop-floor

堆积 概率逻辑 集成学习 计算机科学 人工智能 机器学习 化学 有机化学
作者
Xiao Chang,Xiaoliang Jia,Fan Chen
标识
DOI:10.1177/09544054241277581
摘要

Completion time prediction is crucial for analyzing and monitoring the execution of shop-floor’s production planning. However, predicting completion time is still challenging because production process has high uncertainty and influenced by the interaction of various factors. To address above challenges, the stacking ensemble learning based probabilistic prediction model (SEL-PP) to predict completion time is developed. Thereinto, fully connected neural network (FCNN), random forest (RF) and gradient boosted regression tree (GBRT) are used as the first-level base learner to exhibit better nonlinear characteristics, and quantile regression neural network (QRNN) is used as the second-level meta-learner to rectify the mistakes in the prediction of the base learner. After that, the kernel density estimation (KDE) is employed for achieving probability density prediction of completion time. Moreover, particle swarm optimization (PSO) is adopted for key parameter optimization of SEL-PP. Taking the aircraft overhaul shop-floor as an example, a case study is constructed to demonstrate the feasibility and effectiveness of SEL-PP. Through comparing the results, it indicates that the SEL-PP model has better performance in predicting completion time of flexible shop-floor.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Jasper应助阿正嗖啪采纳,获得10
2秒前
3秒前
timeless发布了新的文献求助10
3秒前
wang发布了新的文献求助10
3秒前
4秒前
今后应助xiaobo采纳,获得100
5秒前
6秒前
852应助LZY319采纳,获得30
6秒前
hahehahahei完成签到,获得积分10
7秒前
烟花应助归仔采纳,获得10
7秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
萌萌许发布了新的文献求助10
9秒前
9秒前
么么怡完成签到,获得积分20
9秒前
hahehahahei发布了新的文献求助10
10秒前
10秒前
云来如梦完成签到 ,获得积分10
11秒前
demo完成签到,获得积分10
11秒前
科研通AI6应助熊研研采纳,获得30
11秒前
Janvenns完成签到,获得积分10
12秒前
G18960发布了新的文献求助20
13秒前
13秒前
14秒前
EricXu发布了新的文献求助10
14秒前
Hello应助yyy采纳,获得10
15秒前
zyl完成签到 ,获得积分10
15秒前
Davidjin发布了新的文献求助10
15秒前
S1mple发布了新的文献求助10
16秒前
纯真怜梦发布了新的文献求助10
18秒前
18秒前
大模型应助kingnb采纳,获得10
18秒前
xmcx25完成签到,获得积分10
19秒前
20秒前
orixero应助timeless采纳,获得10
21秒前
21秒前
22秒前
哈哈哈哈哈完成签到,获得积分10
23秒前
复杂沛白完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637066
求助须知:如何正确求助?哪些是违规求助? 4742587
关于积分的说明 14997522
捐赠科研通 4795278
什么是DOI,文献DOI怎么找? 2561882
邀请新用户注册赠送积分活动 1521380
关于科研通互助平台的介绍 1481488