A probabilistic prediction model based on stacking ensemble learning for completion time in flexible shop-floor

堆积 概率逻辑 集成学习 计算机科学 人工智能 机器学习 化学 有机化学
作者
Xiao Chang,Xiaoliang Jia,Fan Chen
标识
DOI:10.1177/09544054241277581
摘要

Completion time prediction is crucial for analyzing and monitoring the execution of shop-floor’s production planning. However, predicting completion time is still challenging because production process has high uncertainty and influenced by the interaction of various factors. To address above challenges, the stacking ensemble learning based probabilistic prediction model (SEL-PP) to predict completion time is developed. Thereinto, fully connected neural network (FCNN), random forest (RF) and gradient boosted regression tree (GBRT) are used as the first-level base learner to exhibit better nonlinear characteristics, and quantile regression neural network (QRNN) is used as the second-level meta-learner to rectify the mistakes in the prediction of the base learner. After that, the kernel density estimation (KDE) is employed for achieving probability density prediction of completion time. Moreover, particle swarm optimization (PSO) is adopted for key parameter optimization of SEL-PP. Taking the aircraft overhaul shop-floor as an example, a case study is constructed to demonstrate the feasibility and effectiveness of SEL-PP. Through comparing the results, it indicates that the SEL-PP model has better performance in predicting completion time of flexible shop-floor.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迷路幼枫完成签到,获得积分10
1秒前
xx完成签到,获得积分20
1秒前
merlinsong完成签到,获得积分10
1秒前
witsjackie完成签到,获得积分10
2秒前
子不语发布了新的文献求助20
3秒前
彩色冥幽完成签到 ,获得积分10
3秒前
4秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
舒心凡应助科研通管家采纳,获得30
6秒前
bkagyin应助科研通管家采纳,获得10
6秒前
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得30
6秒前
6秒前
田様应助科研通管家采纳,获得10
6秒前
科目三应助科研通管家采纳,获得10
6秒前
zhoukang应助科研通管家采纳,获得20
6秒前
搜集达人应助科研通管家采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
Orange应助科研通管家采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
7秒前
今后应助科研通管家采纳,获得10
7秒前
7秒前
8秒前
w__k完成签到 ,获得积分10
8秒前
8秒前
Frank应助漂亮的倒挂金钩采纳,获得10
8秒前
时尚凝海发布了新的文献求助10
9秒前
侯总应助zehua309采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
12秒前
13秒前
wanci应助科研黑猫采纳,获得10
14秒前
rachel发布了新的文献求助10
14秒前
15秒前
shuaiqidewang完成签到 ,获得积分10
16秒前
16秒前
吴晨曦完成签到 ,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601954
求助须知:如何正确求助?哪些是违规求助? 4687248
关于积分的说明 14848264
捐赠科研通 4682437
什么是DOI,文献DOI怎么找? 2539610
邀请新用户注册赠送积分活动 1506406
关于科研通互助平台的介绍 1471359