A probabilistic prediction model based on stacking ensemble learning for completion time in flexible shop-floor

堆积 概率逻辑 集成学习 计算机科学 人工智能 机器学习 化学 有机化学
作者
Xiao Chang,Xiaoliang Jia,Fan Chen
标识
DOI:10.1177/09544054241277581
摘要

Completion time prediction is crucial for analyzing and monitoring the execution of shop-floor’s production planning. However, predicting completion time is still challenging because production process has high uncertainty and influenced by the interaction of various factors. To address above challenges, the stacking ensemble learning based probabilistic prediction model (SEL-PP) to predict completion time is developed. Thereinto, fully connected neural network (FCNN), random forest (RF) and gradient boosted regression tree (GBRT) are used as the first-level base learner to exhibit better nonlinear characteristics, and quantile regression neural network (QRNN) is used as the second-level meta-learner to rectify the mistakes in the prediction of the base learner. After that, the kernel density estimation (KDE) is employed for achieving probability density prediction of completion time. Moreover, particle swarm optimization (PSO) is adopted for key parameter optimization of SEL-PP. Taking the aircraft overhaul shop-floor as an example, a case study is constructed to demonstrate the feasibility and effectiveness of SEL-PP. Through comparing the results, it indicates that the SEL-PP model has better performance in predicting completion time of flexible shop-floor.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
深情安青应助Harssi采纳,获得10
1秒前
yingzaifeixiang发布了新的文献求助150
1秒前
DL0717应助Harssi采纳,获得10
1秒前
VDC应助Harssi采纳,获得30
1秒前
HS发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
小炸日记完成签到,获得积分10
2秒前
宫城应助snowy_owl采纳,获得10
2秒前
zhangnan完成签到,获得积分10
3秒前
3秒前
贪玩云朵发布了新的文献求助10
3秒前
墨殇璃发布了新的文献求助10
3秒前
内向莫茗发布了新的文献求助10
3秒前
枫尽发布了新的文献求助10
4秒前
全力以赴先生完成签到,获得积分10
4秒前
4秒前
5秒前
jia完成签到 ,获得积分10
5秒前
酷波er应助无心的迎波采纳,获得10
5秒前
钻石发布了新的文献求助10
5秒前
暴躁四叔应助PoPOpO采纳,获得20
5秒前
5秒前
飞快的冬天完成签到 ,获得积分10
6秒前
grhhw发布了新的文献求助10
6秒前
乐乐应助dora采纳,获得30
6秒前
6秒前
风枫叶发布了新的文献求助10
7秒前
7秒前
Accept应助我劝告了风采纳,获得10
8秒前
李大白完成签到,获得积分10
8秒前
8秒前
冷静访梦完成签到,获得积分10
8秒前
9秒前
希望天下0贩的0应助1231kk采纳,获得10
9秒前
沅6完成签到,获得积分10
9秒前
9秒前
pluto应助llr123采纳,获得10
9秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3487798
求助须知:如何正确求助?哪些是违规求助? 3075697
关于积分的说明 9141664
捐赠科研通 2767951
什么是DOI,文献DOI怎么找? 1518837
邀请新用户注册赠送积分活动 703346
科研通“疑难数据库(出版商)”最低求助积分说明 701805