A probabilistic prediction model based on stacking ensemble learning for completion time in flexible shop-floor

堆积 概率逻辑 集成学习 计算机科学 人工智能 机器学习 化学 有机化学
作者
Xiao Chang,Xiaoliang Jia,Fan Chen
标识
DOI:10.1177/09544054241277581
摘要

Completion time prediction is crucial for analyzing and monitoring the execution of shop-floor’s production planning. However, predicting completion time is still challenging because production process has high uncertainty and influenced by the interaction of various factors. To address above challenges, the stacking ensemble learning based probabilistic prediction model (SEL-PP) to predict completion time is developed. Thereinto, fully connected neural network (FCNN), random forest (RF) and gradient boosted regression tree (GBRT) are used as the first-level base learner to exhibit better nonlinear characteristics, and quantile regression neural network (QRNN) is used as the second-level meta-learner to rectify the mistakes in the prediction of the base learner. After that, the kernel density estimation (KDE) is employed for achieving probability density prediction of completion time. Moreover, particle swarm optimization (PSO) is adopted for key parameter optimization of SEL-PP. Taking the aircraft overhaul shop-floor as an example, a case study is constructed to demonstrate the feasibility and effectiveness of SEL-PP. Through comparing the results, it indicates that the SEL-PP model has better performance in predicting completion time of flexible shop-floor.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
念y完成签到 ,获得积分10
刚刚
研友_VZG7GZ应助泡芙采纳,获得10
刚刚
汉堡包应助优雅的新筠采纳,获得10
刚刚
Pu_tao完成签到,获得积分10
刚刚
刚刚
333发布了新的文献求助10
1秒前
shhoing应助Mcdull采纳,获得10
1秒前
1秒前
obaica完成签到,获得积分10
1秒前
酷波er应助健壮的凉面采纳,获得10
1秒前
AME发布了新的文献求助10
2秒前
慧1111111应助精明的雅绿采纳,获得10
3秒前
四眼骷髅完成签到,获得积分20
3秒前
3秒前
魁梧的熊猫完成签到,获得积分10
3秒前
小猪完成签到,获得积分10
3秒前
4秒前
4秒前
小云朵完成签到,获得积分20
5秒前
希望天下0贩的0应助YAN采纳,获得10
5秒前
5秒前
lxg完成签到,获得积分10
5秒前
墨水完成签到,获得积分10
6秒前
6秒前
6秒前
san完成签到,获得积分10
6秒前
7秒前
Criminology34应助小猪采纳,获得10
7秒前
ChenYX发布了新的文献求助10
7秒前
李健的粉丝团团长应助333采纳,获得10
7秒前
8秒前
8秒前
zhuzhu完成签到 ,获得积分20
8秒前
小二郎应助Lixiang采纳,获得10
8秒前
科研通AI6应助oyk采纳,获得10
9秒前
内向的芸发布了新的文献求助10
10秒前
10秒前
汉堡包应助hanchen采纳,获得10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5552171
求助须知:如何正确求助?哪些是违规求助? 4636980
关于积分的说明 14646858
捐赠科研通 4578831
什么是DOI,文献DOI怎么找? 2511146
邀请新用户注册赠送积分活动 1486319
关于科研通互助平台的介绍 1457510