Dipropyl sulfide optimized buried interface to improve the performance of inverted perovskite solar cells

钙钛矿(结构) 材料科学 硫化物 接口(物质) 光电子学 化学 结晶学 冶金 复合材料 毛细管数 毛细管作用
作者
Jiali Wei,Xin Wang,H. Yang,Jingwei Guo,Tiantian Li,Chengjun Zhu,Fuhua Hou
出处
期刊:Applied Physics Letters [American Institute of Physics]
卷期号:125 (14)
标识
DOI:10.1063/5.0226220
摘要

Recently, [4–(3,6-dimethyl-9H-carbazol-9-yl)butyl] phosphonic acid (Me-4PACz) has garnered significant attention as a highly effective passivation layer for NiOx. However, the Me-4PACz passivation layer shows low wettability to perovskite precursors, hindering the crystallization of perovskite. Moreover, Me-4PACz does not uniformly and completely cover NiOx, failing to achieve an optimal passivation effect. The presence of high-valence-state Ni species and reactive hydroxyls on the NiOx film surface leads to perovskite degradation. To address this, dipropyl sulfide (DPS) was incorporated into a solution of Me-4PACz. This approach not only enhances the wettability of Me-4PACz, facilitating the growth of larger perovskite grains but also enables Me-4PACz to form a homogeneous passivation layer with strong coverage. This effectively prevents direct contact between NiOx and perovskite films. Additionally, DPS interacts with reactive hydroxyls, removing them from the NiOx surface and mitigating the deprotonation reaction of MA/FA in perovskite. Furthermore, DPS is reducible, which helps in reducing high-valent Ni (Ni4+), thereby decreasing redox reactions at the interface. As a result, the optimized perovskite solar cells with DPS achieved a power conversion efficiency (PCE) of 22.29%, higher than the control device of 20.52%. Moreover, the DPS-decorated device demonstrated excellent stability, retaining over 80% of its initial PCE value, compared to only 60% retention in the control device. This work modified the buried interface and offers valuable insights for subsequent similar studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sunrise完成签到,获得积分10
刚刚
HH完成签到,获得积分10
1秒前
科研通AI2S应助飞羽采纳,获得10
1秒前
风中寄云完成签到,获得积分20
1秒前
故意的傲玉应助毛慢慢采纳,获得10
1秒前
1秒前
小白发布了新的文献求助10
1秒前
2秒前
2秒前
马尼拉发布了新的文献求助10
3秒前
CodeCraft应助dildil采纳,获得10
3秒前
3秒前
cyanpomelo完成签到 ,获得积分10
4秒前
4秒前
微笑高山完成签到 ,获得积分10
4秒前
文献查找发布了新的文献求助10
4秒前
加油完成签到,获得积分20
5秒前
Sunrise发布了新的文献求助10
5秒前
tabor发布了新的文献求助10
5秒前
唐妮完成签到,获得积分10
5秒前
啵清啵完成签到,获得积分10
6秒前
6秒前
莉莉发布了新的文献求助10
6秒前
7秒前
NexusExplorer应助平常的雁凡采纳,获得10
7秒前
Silverexile完成签到,获得积分10
8秒前
8秒前
唠叨的曼易完成签到,获得积分10
8秒前
Ymj关闭了Ymj文献求助
9秒前
木木雨完成签到,获得积分10
9秒前
9秒前
Harlotte发布了新的文献求助20
9秒前
LINxu发布了新的文献求助10
9秒前
今后应助加油采纳,获得10
9秒前
moonlight发布了新的文献求助10
10秒前
IMkily完成签到,获得积分10
11秒前
深情安青应助sunzhiyu233采纳,获得10
11秒前
11秒前
11秒前
sss发布了新的文献求助20
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759