Research on optimization of talent cultivation mode of industry-teaching integration for mechanical majors in higher vocational colleges based on genetic algorithm

职业教育 遗传算法 模式(计算机接口) 工业工程 制造工程 工程管理 数学教育 计算机科学 工程类 心理学 机器学习 教育学 人机交互
作者
Lanlan Liu
出处
期刊:Applied mathematics and nonlinear sciences [De Gruyter]
卷期号:9 (1)
标识
DOI:10.2478/amns-2024-2795
摘要

Abstract Many researchers and educational institutions are committed to exploring the modes and strategies of industry-education integration, which promotes the close connection between education and industrial needs by jointly carrying out teaching, research, and practice activities. This paper proposes a multi-objective optimization strategy based on genetic algorithms, which aims to enhance and optimize the talent cultivation model through adjustments to the resource matching scheme and teaching task allocation scheme for industry-education integration. The mechanical specialty of a higher vocational college puts forward 10 kinds of industry-teaching integration teaching resource allocation schemes based on teaching tasks, combined with enterprise demand and students’ ability, and substitutes them into the constructed multi-objective integration model, and solves them by genetic algorithm to arrive at the optimal resource allocation scheme G, which has an adaptability value of 0.571, and the matching degree of teaching task 6 under the industry-teaching integration teaching resource allocation scheme G is the highest, which means that the mechanical specialty needs to strengthen the professional knowledge teaching about task 6. Teaching of specialized knowledge about task 6. Additionally, the satisfaction distribution graph from the questionnaire data indicates that students feel more content with the construction and development of the mechanical specialty during the optimized talent cultivation mode of industry-teaching integration. The results of the expert evaluation demonstrate that the integration of industry and education not only yields outstanding outcomes in collaborative education and training (4.32 points) but also partially addresses the talent shortage in positions (4.13 points). However, it still requires enhancement in the professional environment (3.13 points).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
初初见你完成签到,获得积分10
2秒前
5秒前
思源应助淡淡月饼采纳,获得20
5秒前
dd完成签到 ,获得积分10
6秒前
Nayvue发布了新的文献求助10
10秒前
未来的幻想完成签到,获得积分10
12秒前
Kvolu29完成签到,获得积分10
13秒前
长理物电强完成签到,获得积分10
14秒前
若安在完成签到,获得积分10
15秒前
完美世界应助潘特采纳,获得10
16秒前
拼搏问薇完成签到 ,获得积分10
16秒前
单薄乐珍完成签到 ,获得积分0
19秒前
张静枝完成签到 ,获得积分10
19秒前
六步郎完成签到,获得积分10
19秒前
啊怙纲完成签到 ,获得积分10
21秒前
量子星尘发布了新的文献求助10
23秒前
scott_zip完成签到 ,获得积分10
24秒前
gxl完成签到,获得积分0
28秒前
xxx完成签到 ,获得积分10
31秒前
31秒前
努力生活的小柴完成签到,获得积分10
33秒前
35秒前
tangyong完成签到,获得积分10
37秒前
长安发布了新的文献求助10
37秒前
SucceedIn完成签到,获得积分10
38秒前
39秒前
42秒前
海洋岩土12138完成签到 ,获得积分10
43秒前
lzz完成签到 ,获得积分10
43秒前
冬雪完成签到,获得积分10
47秒前
woommoow完成签到,获得积分10
47秒前
aaatan完成签到 ,获得积分10
47秒前
lynn完成签到,获得积分10
48秒前
ABC发布了新的文献求助10
48秒前
回忆完成签到,获得积分10
49秒前
溜了溜了完成签到,获得积分10
52秒前
萧水白完成签到,获得积分10
54秒前
马桶盖盖子完成签到 ,获得积分10
54秒前
漆漆漆漆漆完成签到,获得积分10
56秒前
xzy998应助科研通管家采纳,获得10
56秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038184
求助须知:如何正确求助?哪些是违规求助? 3575908
关于积分的说明 11373872
捐赠科研通 3305715
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022