Research on optimization of talent cultivation mode of industry-teaching integration for mechanical majors in higher vocational colleges based on genetic algorithm

职业教育 遗传算法 模式(计算机接口) 工业工程 制造工程 工程管理 数学教育 计算机科学 工程类 心理学 机器学习 教育学 人机交互
作者
Lanlan Liu
出处
期刊:Applied mathematics and nonlinear sciences [De Gruyter]
卷期号:9 (1)
标识
DOI:10.2478/amns-2024-2795
摘要

Abstract Many researchers and educational institutions are committed to exploring the modes and strategies of industry-education integration, which promotes the close connection between education and industrial needs by jointly carrying out teaching, research, and practice activities. This paper proposes a multi-objective optimization strategy based on genetic algorithms, which aims to enhance and optimize the talent cultivation model through adjustments to the resource matching scheme and teaching task allocation scheme for industry-education integration. The mechanical specialty of a higher vocational college puts forward 10 kinds of industry-teaching integration teaching resource allocation schemes based on teaching tasks, combined with enterprise demand and students’ ability, and substitutes them into the constructed multi-objective integration model, and solves them by genetic algorithm to arrive at the optimal resource allocation scheme G, which has an adaptability value of 0.571, and the matching degree of teaching task 6 under the industry-teaching integration teaching resource allocation scheme G is the highest, which means that the mechanical specialty needs to strengthen the professional knowledge teaching about task 6. Teaching of specialized knowledge about task 6. Additionally, the satisfaction distribution graph from the questionnaire data indicates that students feel more content with the construction and development of the mechanical specialty during the optimized talent cultivation mode of industry-teaching integration. The results of the expert evaluation demonstrate that the integration of industry and education not only yields outstanding outcomes in collaborative education and training (4.32 points) but also partially addresses the talent shortage in positions (4.13 points). However, it still requires enhancement in the professional environment (3.13 points).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
LIUDAN发布了新的文献求助10
1秒前
1秒前
1秒前
Teirow完成签到,获得积分10
1秒前
1秒前
自由的山柏完成签到,获得积分10
1秒前
二橦完成签到 ,获得积分10
1秒前
天马行空完成签到,获得积分10
2秒前
豆子发布了新的文献求助10
2秒前
2秒前
2秒前
伶俐雅柏完成签到,获得积分10
2秒前
2秒前
2秒前
优优的iu完成签到,获得积分10
3秒前
俭朴晓凡发布了新的文献求助10
3秒前
元谷雪发布了新的文献求助10
3秒前
chompa完成签到,获得积分10
3秒前
小黄完成签到,获得积分10
3秒前
AAAAA应助阿鑫采纳,获得10
3秒前
波西米亚完成签到,获得积分10
3秒前
3秒前
打打应助Ryan采纳,获得10
4秒前
程程程完成签到,获得积分10
4秒前
雪影完成签到 ,获得积分10
4秒前
tdtk发布了新的文献求助10
4秒前
5秒前
5秒前
萍水相逢发布了新的文献求助10
5秒前
sikai完成签到,获得积分20
5秒前
Lee完成签到 ,获得积分10
6秒前
3242晶完成签到,获得积分10
6秒前
卷毛完成签到,获得积分10
6秒前
Akim应助jie采纳,获得10
6秒前
make发布了新的文献求助10
6秒前
菠菜发布了新的文献求助30
6秒前
西西发布了新的文献求助10
6秒前
光亮熠彤完成签到 ,获得积分20
7秒前
7秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5337533
求助须知:如何正确求助?哪些是违规求助? 4474745
关于积分的说明 13925710
捐赠科研通 4369749
什么是DOI,文献DOI怎么找? 2400934
邀请新用户注册赠送积分活动 1394041
关于科研通互助平台的介绍 1365885