已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Research on optimization of talent cultivation mode of industry-teaching integration for mechanical majors in higher vocational colleges based on genetic algorithm

职业教育 遗传算法 模式(计算机接口) 工业工程 制造工程 工程管理 数学教育 计算机科学 工程类 心理学 机器学习 教育学 人机交互
作者
Lanlan Liu
出处
期刊:Applied mathematics and nonlinear sciences [De Gruyter]
卷期号:9 (1)
标识
DOI:10.2478/amns-2024-2795
摘要

Abstract Many researchers and educational institutions are committed to exploring the modes and strategies of industry-education integration, which promotes the close connection between education and industrial needs by jointly carrying out teaching, research, and practice activities. This paper proposes a multi-objective optimization strategy based on genetic algorithms, which aims to enhance and optimize the talent cultivation model through adjustments to the resource matching scheme and teaching task allocation scheme for industry-education integration. The mechanical specialty of a higher vocational college puts forward 10 kinds of industry-teaching integration teaching resource allocation schemes based on teaching tasks, combined with enterprise demand and students’ ability, and substitutes them into the constructed multi-objective integration model, and solves them by genetic algorithm to arrive at the optimal resource allocation scheme G, which has an adaptability value of 0.571, and the matching degree of teaching task 6 under the industry-teaching integration teaching resource allocation scheme G is the highest, which means that the mechanical specialty needs to strengthen the professional knowledge teaching about task 6. Teaching of specialized knowledge about task 6. Additionally, the satisfaction distribution graph from the questionnaire data indicates that students feel more content with the construction and development of the mechanical specialty during the optimized talent cultivation mode of industry-teaching integration. The results of the expert evaluation demonstrate that the integration of industry and education not only yields outstanding outcomes in collaborative education and training (4.32 points) but also partially addresses the talent shortage in positions (4.13 points). However, it still requires enhancement in the professional environment (3.13 points).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
4秒前
4秒前
zht完成签到,获得积分10
5秒前
Lemon完成签到 ,获得积分10
6秒前
谷雨发布了新的文献求助10
8秒前
9秒前
哈哈哈发布了新的文献求助10
10秒前
10秒前
Sk发布了新的文献求助10
13秒前
14秒前
XIXIXI完成签到 ,获得积分10
14秒前
LZYJJ完成签到,获得积分10
15秒前
午盏完成签到,获得积分10
19秒前
香蕉觅云应助LZYJJ采纳,获得10
19秒前
22秒前
han完成签到,获得积分10
23秒前
23秒前
24秒前
拼搏凡双完成签到,获得积分20
24秒前
酷波er应助sun采纳,获得10
24秒前
早日毕业完成签到,获得积分10
25秒前
整齐半青完成签到 ,获得积分10
26秒前
paulmichael完成签到,获得积分10
26秒前
小虎牙发布了新的文献求助10
26秒前
26秒前
上官若男应助Gyz采纳,获得30
27秒前
29秒前
29秒前
30秒前
Akim应助哈哈哈采纳,获得10
30秒前
慈祥的蛋挞完成签到 ,获得积分10
31秒前
paulmichael发布了新的文献求助10
32秒前
LZYJJ发布了新的文献求助10
33秒前
拼搏凡双发布了新的文献求助10
33秒前
恒河鲤完成签到,获得积分0
34秒前
sun发布了新的文献求助10
34秒前
爱学习的小钟完成签到 ,获得积分10
34秒前
卷卷应助sxmt123456789采纳,获得30
34秒前
苏qj完成签到,获得积分10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590231
求助须知:如何正确求助?哪些是违规求助? 4674624
关于积分的说明 14794913
捐赠科研通 4630761
什么是DOI,文献DOI怎么找? 2532630
邀请新用户注册赠送积分活动 1501218
关于科研通互助平台的介绍 1468576