Research on optimization of talent cultivation mode of industry-teaching integration for mechanical majors in higher vocational colleges based on genetic algorithm

职业教育 遗传算法 模式(计算机接口) 工业工程 制造工程 工程管理 数学教育 计算机科学 工程类 心理学 机器学习 教育学 人机交互
作者
Lanlan Liu
出处
期刊:Applied mathematics and nonlinear sciences [De Gruyter]
卷期号:9 (1)
标识
DOI:10.2478/amns-2024-2795
摘要

Abstract Many researchers and educational institutions are committed to exploring the modes and strategies of industry-education integration, which promotes the close connection between education and industrial needs by jointly carrying out teaching, research, and practice activities. This paper proposes a multi-objective optimization strategy based on genetic algorithms, which aims to enhance and optimize the talent cultivation model through adjustments to the resource matching scheme and teaching task allocation scheme for industry-education integration. The mechanical specialty of a higher vocational college puts forward 10 kinds of industry-teaching integration teaching resource allocation schemes based on teaching tasks, combined with enterprise demand and students’ ability, and substitutes them into the constructed multi-objective integration model, and solves them by genetic algorithm to arrive at the optimal resource allocation scheme G, which has an adaptability value of 0.571, and the matching degree of teaching task 6 under the industry-teaching integration teaching resource allocation scheme G is the highest, which means that the mechanical specialty needs to strengthen the professional knowledge teaching about task 6. Teaching of specialized knowledge about task 6. Additionally, the satisfaction distribution graph from the questionnaire data indicates that students feel more content with the construction and development of the mechanical specialty during the optimized talent cultivation mode of industry-teaching integration. The results of the expert evaluation demonstrate that the integration of industry and education not only yields outstanding outcomes in collaborative education and training (4.32 points) but also partially addresses the talent shortage in positions (4.13 points). However, it still requires enhancement in the professional environment (3.13 points).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冯先森ya发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
Jonathan完成签到,获得积分10
7秒前
wsj发布了新的文献求助10
8秒前
9秒前
整齐小松鼠应助wsj采纳,获得10
13秒前
13秒前
14秒前
14秒前
17秒前
17秒前
17秒前
18秒前
Owen应助超速也文章采纳,获得10
19秒前
张雯思发布了新的文献求助10
21秒前
清爽尔安发布了新的文献求助10
21秒前
22秒前
孙燕应助幸福大白采纳,获得30
22秒前
香香应助研友_Zzrx6Z采纳,获得10
22秒前
24秒前
25秒前
25秒前
从容的柜子完成签到 ,获得积分10
26秒前
26秒前
木可发布了新的文献求助10
27秒前
清爽尔安完成签到,获得积分10
28秒前
Komorebi完成签到 ,获得积分10
28秒前
qqq发布了新的文献求助10
28秒前
所所应助独特乘云采纳,获得10
29秒前
30秒前
31秒前
小蘑菇应助发疯的草莓采纳,获得10
32秒前
小绵羊发布了新的文献求助10
33秒前
八卦巧克力完成签到,获得积分10
33秒前
lzw发布了新的文献求助10
34秒前
iNk应助wodetaiyangLLL采纳,获得10
37秒前
38秒前
帆帆完成签到,获得积分10
38秒前
40秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989406
求助须知:如何正确求助?哪些是违规求助? 3531522
关于积分的说明 11254187
捐赠科研通 3270174
什么是DOI,文献DOI怎么找? 1804901
邀请新用户注册赠送积分活动 882105
科研通“疑难数据库(出版商)”最低求助积分说明 809174