Research on optimization of talent cultivation mode of industry-teaching integration for mechanical majors in higher vocational colleges based on genetic algorithm

职业教育 遗传算法 模式(计算机接口) 工业工程 制造工程 工程管理 数学教育 计算机科学 工程类 心理学 机器学习 教育学 人机交互
作者
Lanlan Liu
出处
期刊:Applied mathematics and nonlinear sciences [De Gruyter]
卷期号:9 (1)
标识
DOI:10.2478/amns-2024-2795
摘要

Abstract Many researchers and educational institutions are committed to exploring the modes and strategies of industry-education integration, which promotes the close connection between education and industrial needs by jointly carrying out teaching, research, and practice activities. This paper proposes a multi-objective optimization strategy based on genetic algorithms, which aims to enhance and optimize the talent cultivation model through adjustments to the resource matching scheme and teaching task allocation scheme for industry-education integration. The mechanical specialty of a higher vocational college puts forward 10 kinds of industry-teaching integration teaching resource allocation schemes based on teaching tasks, combined with enterprise demand and students’ ability, and substitutes them into the constructed multi-objective integration model, and solves them by genetic algorithm to arrive at the optimal resource allocation scheme G, which has an adaptability value of 0.571, and the matching degree of teaching task 6 under the industry-teaching integration teaching resource allocation scheme G is the highest, which means that the mechanical specialty needs to strengthen the professional knowledge teaching about task 6. Teaching of specialized knowledge about task 6. Additionally, the satisfaction distribution graph from the questionnaire data indicates that students feel more content with the construction and development of the mechanical specialty during the optimized talent cultivation mode of industry-teaching integration. The results of the expert evaluation demonstrate that the integration of industry and education not only yields outstanding outcomes in collaborative education and training (4.32 points) but also partially addresses the talent shortage in positions (4.13 points). However, it still requires enhancement in the professional environment (3.13 points).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
王丹丹发布了新的文献求助10
1秒前
打打应助dian采纳,获得10
1秒前
1秒前
AN关闭了AN文献求助
1秒前
whjbb完成签到,获得积分20
2秒前
2秒前
打打应助micexily采纳,获得10
3秒前
Sean完成签到,获得积分10
3秒前
科研通AI6应助小巧酸奶采纳,获得10
4秒前
xiuT完成签到,获得积分10
4秒前
王一正完成签到,获得积分10
5秒前
高级牛马完成签到 ,获得积分10
5秒前
5秒前
5秒前
科研互通完成签到,获得积分10
6秒前
huhdcid发布了新的文献求助10
7秒前
狗大王完成签到,获得积分10
7秒前
8秒前
8秒前
Sean发布了新的文献求助10
8秒前
9秒前
祝佳其完成签到 ,获得积分10
9秒前
10秒前
11秒前
Lynne完成签到,获得积分10
12秒前
孔孔发布了新的文献求助10
13秒前
哈哈哈发布了新的文献求助30
13秒前
深情安青应助程小小采纳,获得10
14秒前
小靳完成签到,获得积分10
14秒前
明理的道天完成签到 ,获得积分10
15秒前
15秒前
sfafasfsdf完成签到,获得积分10
16秒前
16秒前
eo发布了新的文献求助10
17秒前
小靳发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
19秒前
领导范儿应助zgl0806采纳,获得10
19秒前
小米发布了新的文献求助10
19秒前
桐桐应助科研通管家采纳,获得20
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5484152
求助须知:如何正确求助?哪些是违规求助? 4584446
关于积分的说明 14397956
捐赠科研通 4514459
什么是DOI,文献DOI怎么找? 2474010
邀请新用户注册赠送积分活动 1459963
关于科研通互助平台的介绍 1433365