Cohort-Individual Cooperative Learning for Multimodal Cancer Survival Analysis

计算机科学 队列 人工智能 癌症 医学 内科学
作者
Huajun Zhou,Fengtao Zhou,Hao Chen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3455931
摘要

Recently, we have witnessed impressive achievements in cancer survival analysis by integrating multimodal data, e.g., pathology images and genomic profiles. However, the heterogeneity and high dimensionality of these modalities pose significant challenges for extracting discriminative representations while maintaining good generalization. In this paper, we propose a Cohortindividual Cooperative Learning (CCL) framework to advance cancer survival analysis by collaborating knowledge decomposition and cohort guidance. Specifically, first, we propose a Multimodal Knowledge Decomposition (MKD) module to explicitly decompose multimodal knowledge into four distinct components: redundancy, synergy and uniqueness of the two modalities. Such a comprehensive decomposition can enlighten the models to perceive easily overlooked yet important information, facilitating an effective multimodal fusion. Second, we propose a Cohort Guidance Modeling (CGM) to mitigate the risk of overfitting task-irrelevant information. It can promote a more comprehensive and robust understanding of the underlying multimodal data, while avoiding the pitfalls of overfitting and enhancing the generalization ability of the model. By cooperating the knowledge decomposition and cohort guidance methods, we develop a robust multimodal survival analysis model with enhanced discrimination and generalization abilities. Extensive experimental results on five cancer datasets demonstrate the effectiveness of our model in integrating multimodal data for survival analysis. The code will be publicly available soon.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
脑洞疼应助美满的灵松采纳,获得10
1秒前
香蕉觅云应助LL采纳,获得10
2秒前
2秒前
llj完成签到,获得积分10
2秒前
爆米花应助落落采纳,获得10
3秒前
顾矜应助Terry采纳,获得30
4秒前
思源应助kirren采纳,获得10
5秒前
谨慎太兰发布了新的文献求助10
5秒前
善学以致用应助祎思采纳,获得10
5秒前
zdh发布了新的文献求助10
6秒前
中国好青年完成签到,获得积分20
7秒前
英俊的铭应助务实慕青采纳,获得10
9秒前
9秒前
今后应助JJJJJJJ采纳,获得10
11秒前
Jerry完成签到,获得积分10
11秒前
天天快乐应助CAIJING采纳,获得10
12秒前
12秒前
啦啦啦小尾巴关注了科研通微信公众号
13秒前
14秒前
zdh完成签到,获得积分10
15秒前
15秒前
16秒前
弓长木易完成签到,获得积分10
17秒前
飞云发布了新的文献求助10
17秒前
孤星发布了新的文献求助10
18秒前
小小浩发布了新的文献求助10
20秒前
酷波er应助姜丝炒土豆丝采纳,获得10
20秒前
qianghw发布了新的文献求助10
20秒前
欢呼芷雪发布了新的文献求助10
21秒前
22秒前
23秒前
24秒前
香蕉觅云应助InsomniaFlight采纳,获得10
24秒前
25秒前
CipherSage应助大苏打v发vv额采纳,获得10
25秒前
htumfg完成签到,获得积分10
27秒前
伴Y发布了新的文献求助10
27秒前
28秒前
赛赛发布了新的文献求助10
28秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
氟盐冷却高温堆非能动余热排出性能及安全分析研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3051374
求助须知:如何正确求助?哪些是违规求助? 2708662
关于积分的说明 7413751
捐赠科研通 2352869
什么是DOI,文献DOI怎么找? 1245378
科研通“疑难数据库(出版商)”最低求助积分说明 605633
版权声明 595829