Cohort-Individual Cooperative Learning for Multimodal Cancer Survival Analysis

计算机科学 队列 人工智能 癌症 医学 内科学
作者
Huajun Zhou,Fengtao Zhou,Hao Chen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:9
标识
DOI:10.1109/tmi.2024.3455931
摘要

Recently, we have witnessed impressive achievements in cancer survival analysis by integrating multimodal data, e.g., pathology images and genomic profiles. However, the heterogeneity and high dimensionality of these modalities pose significant challenges for extracting discriminative representations while maintaining good generalization. In this paper, we propose a Cohortindividual Cooperative Learning (CCL) framework to advance cancer survival analysis by collaborating knowledge decomposition and cohort guidance. Specifically, first, we propose a Multimodal Knowledge Decomposition (MKD) module to explicitly decompose multimodal knowledge into four distinct components: redundancy, synergy and uniqueness of the two modalities. Such a comprehensive decomposition can enlighten the models to perceive easily overlooked yet important information, facilitating an effective multimodal fusion. Second, we propose a Cohort Guidance Modeling (CGM) to mitigate the risk of overfitting task-irrelevant information. It can promote a more comprehensive and robust understanding of the underlying multimodal data, while avoiding the pitfalls of overfitting and enhancing the generalization ability of the model. By cooperating the knowledge decomposition and cohort guidance methods, we develop a robust multimodal survival analysis model with enhanced discrimination and generalization abilities. Extensive experimental results on five cancer datasets demonstrate the effectiveness of our model in integrating multimodal data for survival analysis. The code will be publicly available soon.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助veblem采纳,获得10
刚刚
哦呵发布了新的文献求助20
刚刚
科研通AI6应助wisdom采纳,获得10
刚刚
量子星尘发布了新的文献求助10
1秒前
ys完成签到,获得积分10
1秒前
2秒前
Orange应助寒月如雪采纳,获得10
2秒前
2秒前
LHTTT发布了新的文献求助10
3秒前
3秒前
lqhccww发布了新的文献求助10
3秒前
秋雨发布了新的文献求助10
4秒前
慕青应助wushengdeyu采纳,获得10
5秒前
酷波er应助成1采纳,获得10
5秒前
5秒前
ouffuu完成签到,获得积分10
6秒前
圣泽同学完成签到,获得积分10
6秒前
6秒前
WXY完成签到,获得积分10
7秒前
wdl完成签到,获得积分10
8秒前
bkagyin应助Ashley采纳,获得10
8秒前
初心发布了新的文献求助10
8秒前
8秒前
无奈的炳发布了新的文献求助10
8秒前
X_Chen发布了新的文献求助10
9秒前
9秒前
SciGPT应助ashley325采纳,获得10
9秒前
shyx完成签到 ,获得积分10
9秒前
9秒前
南宫世立完成签到,获得积分20
10秒前
king_of_zju发布了新的文献求助10
12秒前
善良的绮山完成签到 ,获得积分10
12秒前
xx完成签到,获得积分20
12秒前
13秒前
hui发布了新的文献求助10
13秒前
wsx发布了新的文献求助10
13秒前
14秒前
斯文败类应助秋雨采纳,获得10
14秒前
CH完成签到,获得积分10
14秒前
自然妙旋完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531157
求助须知:如何正确求助?哪些是违规求助? 4620066
关于积分的说明 14571278
捐赠科研通 4559548
什么是DOI,文献DOI怎么找? 2498481
邀请新用户注册赠送积分活动 1478473
关于科研通互助平台的介绍 1449946