Cohort-Individual Cooperative Learning for Multimodal Cancer Survival Analysis

计算机科学 队列 人工智能 癌症 医学 内科学
作者
Huajun Zhou,Fengtao Zhou,Hao Chen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:9
标识
DOI:10.1109/tmi.2024.3455931
摘要

Recently, we have witnessed impressive achievements in cancer survival analysis by integrating multimodal data, e.g., pathology images and genomic profiles. However, the heterogeneity and high dimensionality of these modalities pose significant challenges for extracting discriminative representations while maintaining good generalization. In this paper, we propose a Cohortindividual Cooperative Learning (CCL) framework to advance cancer survival analysis by collaborating knowledge decomposition and cohort guidance. Specifically, first, we propose a Multimodal Knowledge Decomposition (MKD) module to explicitly decompose multimodal knowledge into four distinct components: redundancy, synergy and uniqueness of the two modalities. Such a comprehensive decomposition can enlighten the models to perceive easily overlooked yet important information, facilitating an effective multimodal fusion. Second, we propose a Cohort Guidance Modeling (CGM) to mitigate the risk of overfitting task-irrelevant information. It can promote a more comprehensive and robust understanding of the underlying multimodal data, while avoiding the pitfalls of overfitting and enhancing the generalization ability of the model. By cooperating the knowledge decomposition and cohort guidance methods, we develop a robust multimodal survival analysis model with enhanced discrimination and generalization abilities. Extensive experimental results on five cancer datasets demonstrate the effectiveness of our model in integrating multimodal data for survival analysis. The code will be publicly available soon.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助jeremyher采纳,获得10
1秒前
1秒前
AN应助WU采纳,获得10
2秒前
香蕉觅云应助WU采纳,获得10
2秒前
2秒前
3秒前
SciGPT应助发发呆采纳,获得10
3秒前
温纲完成签到,获得积分10
4秒前
gavin发布了新的文献求助10
5秒前
Yaseen发布了新的文献求助10
5秒前
5秒前
科研通AI6.1应助柴啊采纳,获得30
5秒前
7秒前
WMT完成签到 ,获得积分10
7秒前
yxy发布了新的文献求助10
9秒前
9秒前
cc发布了新的文献求助30
9秒前
10秒前
打打应助ccc6195采纳,获得20
11秒前
包尚易发布了新的文献求助50
11秒前
pbj发布了新的文献求助10
11秒前
11秒前
xxxhm发布了新的文献求助10
12秒前
rui2820完成签到,获得积分10
12秒前
12秒前
酷波er应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
12秒前
12秒前
12秒前
12秒前
酷波er应助科研通管家采纳,获得10
13秒前
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
13秒前
共享精神应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771462
求助须知:如何正确求助?哪些是违规求助? 5591687
关于积分的说明 15427521
捐赠科研通 4904775
什么是DOI,文献DOI怎么找? 2638990
邀请新用户注册赠送积分活动 1586782
关于科研通互助平台的介绍 1541792