Cohort-Individual Cooperative Learning for Multimodal Cancer Survival Analysis

计算机科学 队列 人工智能 癌症 医学 内科学
作者
Huajun Zhou,Fengtao Zhou,Hao Chen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3455931
摘要

Recently, we have witnessed impressive achievements in cancer survival analysis by integrating multimodal data, e.g., pathology images and genomic profiles. However, the heterogeneity and high dimensionality of these modalities pose significant challenges for extracting discriminative representations while maintaining good generalization. In this paper, we propose a Cohortindividual Cooperative Learning (CCL) framework to advance cancer survival analysis by collaborating knowledge decomposition and cohort guidance. Specifically, first, we propose a Multimodal Knowledge Decomposition (MKD) module to explicitly decompose multimodal knowledge into four distinct components: redundancy, synergy and uniqueness of the two modalities. Such a comprehensive decomposition can enlighten the models to perceive easily overlooked yet important information, facilitating an effective multimodal fusion. Second, we propose a Cohort Guidance Modeling (CGM) to mitigate the risk of overfitting task-irrelevant information. It can promote a more comprehensive and robust understanding of the underlying multimodal data, while avoiding the pitfalls of overfitting and enhancing the generalization ability of the model. By cooperating the knowledge decomposition and cohort guidance methods, we develop a robust multimodal survival analysis model with enhanced discrimination and generalization abilities. Extensive experimental results on five cancer datasets demonstrate the effectiveness of our model in integrating multimodal data for survival analysis. The code will be publicly available soon.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助Yjj采纳,获得10
1秒前
共享精神应助cai采纳,获得10
1秒前
dachuichui发布了新的文献求助10
1秒前
威武的锅锅完成签到,获得积分20
2秒前
小陈陈要读博完成签到,获得积分10
2秒前
机械腾完成签到,获得积分10
2秒前
2秒前
朴素的梦岚完成签到,获得积分10
2秒前
3秒前
Nano-Su完成签到,获得积分10
3秒前
勤奋鞋子完成签到,获得积分10
3秒前
ZXC发布了新的文献求助10
3秒前
少侠不是菜鸟完成签到,获得积分10
4秒前
5秒前
5秒前
等待如天完成签到,获得积分20
6秒前
遥远的尧完成签到,获得积分10
6秒前
风趣的南霜完成签到,获得积分10
6秒前
LH关闭了LH文献求助
6秒前
6秒前
immunity完成签到,获得积分10
7秒前
7秒前
feimengxia完成签到 ,获得积分10
8秒前
8秒前
投石问路完成签到,获得积分10
9秒前
dachuichui完成签到,获得积分10
9秒前
奈思完成签到 ,获得积分10
9秒前
扶恩完成签到,获得积分10
10秒前
宋小花儿完成签到,获得积分10
10秒前
嘿嘿嘿嘿完成签到,获得积分10
10秒前
无奈书包发布了新的文献求助10
11秒前
九九完成签到,获得积分10
11秒前
Lucas应助虚幻的水之采纳,获得10
12秒前
耳朵儿歌完成签到,获得积分10
13秒前
14秒前
14秒前
落寞的书易完成签到 ,获得积分10
14秒前
坚定背包完成签到,获得积分10
17秒前
17秒前
wrr完成签到,获得积分10
17秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167356
求助须知:如何正确求助?哪些是违规求助? 2818845
关于积分的说明 7923006
捐赠科研通 2478644
什么是DOI,文献DOI怎么找? 1320424
科研通“疑难数据库(出版商)”最低求助积分说明 632786
版权声明 602443