Cohort-Individual Cooperative Learning for Multimodal Cancer Survival Analysis

计算机科学 队列 人工智能 癌症 医学 内科学
作者
Huajun Zhou,Fengtao Zhou,Hao Chen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:3
标识
DOI:10.1109/tmi.2024.3455931
摘要

Recently, we have witnessed impressive achievements in cancer survival analysis by integrating multimodal data, e.g., pathology images and genomic profiles. However, the heterogeneity and high dimensionality of these modalities pose significant challenges for extracting discriminative representations while maintaining good generalization. In this paper, we propose a Cohortindividual Cooperative Learning (CCL) framework to advance cancer survival analysis by collaborating knowledge decomposition and cohort guidance. Specifically, first, we propose a Multimodal Knowledge Decomposition (MKD) module to explicitly decompose multimodal knowledge into four distinct components: redundancy, synergy and uniqueness of the two modalities. Such a comprehensive decomposition can enlighten the models to perceive easily overlooked yet important information, facilitating an effective multimodal fusion. Second, we propose a Cohort Guidance Modeling (CGM) to mitigate the risk of overfitting task-irrelevant information. It can promote a more comprehensive and robust understanding of the underlying multimodal data, while avoiding the pitfalls of overfitting and enhancing the generalization ability of the model. By cooperating the knowledge decomposition and cohort guidance methods, we develop a robust multimodal survival analysis model with enhanced discrimination and generalization abilities. Extensive experimental results on five cancer datasets demonstrate the effectiveness of our model in integrating multimodal data for survival analysis. The code will be publicly available soon.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CG发布了新的文献求助30
2秒前
彩色的恋风完成签到,获得积分10
3秒前
俞水云完成签到,获得积分10
3秒前
4秒前
5秒前
7秒前
hyx完成签到,获得积分10
7秒前
winjay发布了新的文献求助10
7秒前
牛牛发布了新的文献求助10
7秒前
沉默的凝云完成签到,获得积分10
7秒前
keyanfentouzhe完成签到 ,获得积分10
8秒前
8秒前
10秒前
HY发布了新的文献求助10
12秒前
chen完成签到,获得积分10
13秒前
渝州人完成签到,获得积分10
14秒前
卿君完成签到,获得积分10
14秒前
魔猿应助Sheepycat采纳,获得10
15秒前
yudabaoer发布了新的文献求助20
15秒前
雷雷完成签到,获得积分10
15秒前
17秒前
22秒前
Wind完成签到,获得积分10
24秒前
搂猫睡觉的鱼完成签到,获得积分20
26秒前
裴笑凡发布了新的文献求助10
27秒前
29秒前
yizhi猫完成签到,获得积分20
29秒前
科目三应助科研通管家采纳,获得10
29秒前
慕青应助科研通管家采纳,获得10
29秒前
星辰大海应助科研通管家采纳,获得10
29秒前
Akim应助科研通管家采纳,获得10
29秒前
丘比特应助科研通管家采纳,获得10
29秒前
天天快乐应助科研通管家采纳,获得10
29秒前
29秒前
29秒前
30秒前
结实伯云完成签到,获得积分10
34秒前
李健的小迷弟应助Tracy采纳,获得10
35秒前
花花521完成签到,获得积分10
35秒前
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967156
求助须知:如何正确求助?哪些是违规求助? 3512491
关于积分的说明 11163601
捐赠科研通 3247421
什么是DOI,文献DOI怎么找? 1793805
邀请新用户注册赠送积分活动 874615
科研通“疑难数据库(出版商)”最低求助积分说明 804468