Cohort-Individual Cooperative Learning for Multimodal Cancer Survival Analysis

计算机科学 队列 人工智能 癌症 医学 内科学
作者
Huajun Zhou,Fengtao Zhou,Hao Chen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3455931
摘要

Recently, we have witnessed impressive achievements in cancer survival analysis by integrating multimodal data, e.g., pathology images and genomic profiles. However, the heterogeneity and high dimensionality of these modalities pose significant challenges for extracting discriminative representations while maintaining good generalization. In this paper, we propose a Cohortindividual Cooperative Learning (CCL) framework to advance cancer survival analysis by collaborating knowledge decomposition and cohort guidance. Specifically, first, we propose a Multimodal Knowledge Decomposition (MKD) module to explicitly decompose multimodal knowledge into four distinct components: redundancy, synergy and uniqueness of the two modalities. Such a comprehensive decomposition can enlighten the models to perceive easily overlooked yet important information, facilitating an effective multimodal fusion. Second, we propose a Cohort Guidance Modeling (CGM) to mitigate the risk of overfitting task-irrelevant information. It can promote a more comprehensive and robust understanding of the underlying multimodal data, while avoiding the pitfalls of overfitting and enhancing the generalization ability of the model. By cooperating the knowledge decomposition and cohort guidance methods, we develop a robust multimodal survival analysis model with enhanced discrimination and generalization abilities. Extensive experimental results on five cancer datasets demonstrate the effectiveness of our model in integrating multimodal data for survival analysis. The code will be publicly available soon.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Agan发布了新的文献求助10
1秒前
1秒前
2秒前
morlison发布了新的文献求助10
2秒前
科研通AI5应助金色年华采纳,获得10
4秒前
充电宝应助kh453采纳,获得10
4秒前
正经俠发布了新的文献求助10
4秒前
一衣发布了新的文献求助20
5秒前
可爱的函函应助药学牛马采纳,获得10
5秒前
XM发布了新的文献求助10
5秒前
专注之双完成签到,获得积分10
6秒前
SciGPT应助十一采纳,获得10
6秒前
6秒前
A1234完成签到,获得积分10
7秒前
刘铭晨发布了新的文献求助10
8秒前
孙冉冉完成签到 ,获得积分10
11秒前
11秒前
12秒前
12秒前
大模型应助hhzz采纳,获得10
13秒前
一只智慧喵完成签到,获得积分10
13秒前
科目三应助Fundamental采纳,获得10
14秒前
14秒前
miumiuka发布了新的文献求助10
15秒前
greenPASS666发布了新的文献求助10
16秒前
xuanxuan发布了新的文献求助10
16秒前
zfy发布了新的文献求助10
18秒前
18秒前
18秒前
Maor完成签到,获得积分10
18秒前
白菜发布了新的文献求助10
19秒前
19秒前
20秒前
妮妮完成签到 ,获得积分10
22秒前
22秒前
傲娇的凡旋应助spurs17采纳,获得10
22秒前
长情若魔完成签到,获得积分10
24秒前
XM完成签到,获得积分10
24秒前
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808