Disorder-mediated ionic conductivity in irreducible solid electrolytes

离子电导率 电解质 电导率 离子键合 快离子导体 材料科学 化学 高分子化学 离子 有机化学 物理化学 电极
作者
Victor Landgraf,Mengfu Tu,Wen-Xuan Zhao,Anastasiia Lavrinenko,Zhu Cheng,Jef Canals,Joris de Leeuw,Swapna Ganapathy,Alexandros Vasileiadis,Marnix Wagemaker,Theodosios Famprikis
标识
DOI:10.26434/chemrxiv-2023-33r87-v2
摘要

Solid state batteries currently receive extensive attention due to their potential to outperform lithium ion batteries in terms of energy density when featuring next generation anodes such as lithium metal or silicon. However, most highly conducting solid electrolytes decompose at the low operating voltages of next-generation anodes leading to irreversible lithium loss and increased cell resistance. Such performance losses may be prevented by designing electrolytes which are thermodynamically stable at low operating voltages (anolytes). Here, we report on the discovery a new family of irreducible (i.e. fully reduced) electrolytes by mechanochemically dissolving lithium nitride into the Li2S antifluorite structure, yielding highly conducting crystalline Li2+xS1-xNx phases reaching > 0.2 mS cm-1 at ambient temperatures. Combining impedance spectroscopy experiments and ab initio density functional theory calculations we clarify the mechanism by which the disordering of the sulfide and nitride ions in the anion sublattice boosts ionic conductivity in Li2+xS1-xNx phases by a factor 10^5 compared to the Li2S host structure. This advance is achieved through a novel theoretical framework, leveraging percolation analysis with local-environment-specific activation energies and is widely applicable to disordered ion conductors. The same methodology allows us to rationalize how increasing nitrogen content in Li2+xS1-xNx antifluorite-like samples leads to both increased ionic conductivity and lower conductivity-activation energy. These findings pave the way to understanding disordered solid electrolytes and eliminating decomposition-induced performance losses on the anode side in solid-state batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清爽忆山发布了新的文献求助10
1秒前
睡觉晒太阳完成签到,获得积分10
1秒前
andy完成签到,获得积分10
1秒前
1秒前
Itachi12138完成签到,获得积分10
1秒前
CipherSage应助蓝莓松饼采纳,获得10
1秒前
1秒前
团团完成签到,获得积分10
1秒前
追寻的易烟完成签到,获得积分10
1秒前
snow完成签到,获得积分10
2秒前
2秒前
2秒前
1111完成签到,获得积分20
3秒前
爆米花应助笑点低蜜蜂采纳,获得10
3秒前
橘子味汽水完成签到 ,获得积分10
3秒前
Victor陈完成签到,获得积分10
3秒前
3秒前
seed85完成签到,获得积分10
3秒前
最初完成签到,获得积分20
4秒前
Hello应助Chem is try采纳,获得10
4秒前
hhh发布了新的文献求助10
4秒前
4秒前
5秒前
落寞白曼完成签到,获得积分10
6秒前
6秒前
海鸥海鸥发布了新的文献求助10
7秒前
别让我误会完成签到 ,获得积分10
8秒前
8秒前
KK发布了新的文献求助30
8秒前
娃娃完成签到 ,获得积分20
8秒前
科研通AI5应助结实的冰真采纳,获得30
8秒前
冷静的小熊猫完成签到,获得积分10
9秒前
Donnie完成签到,获得积分10
9秒前
若尘完成签到,获得积分10
10秒前
椰子完成签到 ,获得积分10
10秒前
10秒前
细腻涵菱完成签到,获得积分10
11秒前
吕耀炜完成签到,获得积分10
11秒前
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672