Disorder-mediated ionic conductivity in irreducible solid electrolytes

离子电导率 电解质 电导率 离子键合 快离子导体 材料科学 化学 高分子化学 离子 有机化学 物理化学 电极
作者
Victor Landgraf,Mengfu Tu,Wen-Xuan Zhao,Anastasiia Lavrinenko,Zhu Cheng,Jef Canals,Joris de Leeuw,Swapna Ganapathy,Alexandros Vasileiadis,Marnix Wagemaker,Theodosios Famprikis
标识
DOI:10.26434/chemrxiv-2023-33r87-v2
摘要

Solid state batteries currently receive extensive attention due to their potential to outperform lithium ion batteries in terms of energy density when featuring next generation anodes such as lithium metal or silicon. However, most highly conducting solid electrolytes decompose at the low operating voltages of next-generation anodes leading to irreversible lithium loss and increased cell resistance. Such performance losses may be prevented by designing electrolytes which are thermodynamically stable at low operating voltages (anolytes). Here, we report on the discovery a new family of irreducible (i.e. fully reduced) electrolytes by mechanochemically dissolving lithium nitride into the Li2S antifluorite structure, yielding highly conducting crystalline Li2+xS1-xNx phases reaching > 0.2 mS cm-1 at ambient temperatures. Combining impedance spectroscopy experiments and ab initio density functional theory calculations we clarify the mechanism by which the disordering of the sulfide and nitride ions in the anion sublattice boosts ionic conductivity in Li2+xS1-xNx phases by a factor 10^5 compared to the Li2S host structure. This advance is achieved through a novel theoretical framework, leveraging percolation analysis with local-environment-specific activation energies and is widely applicable to disordered ion conductors. The same methodology allows us to rationalize how increasing nitrogen content in Li2+xS1-xNx antifluorite-like samples leads to both increased ionic conductivity and lower conductivity-activation energy. These findings pave the way to understanding disordered solid electrolytes and eliminating decomposition-induced performance losses on the anode side in solid-state batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
L_完成签到,获得积分10
1秒前
公司账号2发布了新的文献求助10
1秒前
luming完成签到,获得积分10
2秒前
3秒前
坚定的跳跳糖完成签到 ,获得积分10
4秒前
CLMY完成签到,获得积分10
4秒前
5秒前
咸鱼发布了新的文献求助10
5秒前
5秒前
甜甜亦丝发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助50
6秒前
7秒前
chenfeng发布了新的文献求助30
7秒前
parrowxg完成签到,获得积分10
8秒前
9秒前
orixero应助夏xx采纳,获得10
9秒前
盼盼527完成签到,获得积分10
10秒前
nissy完成签到,获得积分10
11秒前
11发布了新的文献求助10
12秒前
刺五加发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
OOYWZEHNN发布了新的文献求助10
14秒前
bq完成签到,获得积分10
15秒前
AJoe发布了新的文献求助50
17秒前
库库写论文完成签到,获得积分10
18秒前
空写乐发布了新的文献求助30
19秒前
双生客完成签到,获得积分10
20秒前
OOYWZEHNN完成签到,获得积分10
21秒前
23秒前
量子星尘发布了新的文献求助50
24秒前
25秒前
领导范儿应助AJoe采纳,获得10
26秒前
nissy发布了新的文献求助20
26秒前
科研通AI6应助幽默的宛白采纳,获得10
28秒前
28秒前
夏xx发布了新的文献求助10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4920461
求助须知:如何正确求助?哪些是违规求助? 4192039
关于积分的说明 13020047
捐赠科研通 3962876
什么是DOI,文献DOI怎么找? 2172323
邀请新用户注册赠送积分活动 1190156
关于科研通互助平台的介绍 1098997