亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An improved autoencoder for denoising acoustic emission signals in rock fracturing

均方误差 降噪 自编码 声发射 模式识别(心理学) 稳健性(进化) 人工智能 噪音(视频) 计算机科学 卷积神经网络 预处理器 数据预处理 干扰(通信) 人工神经网络 地质学 数学 声学 统计 电信 物理 生物化学 化学 频道(广播) 图像(数学) 基因
作者
Tingting Wang,Yifan Qin,Wanchun Zhao,P.G. Ranjith,Jingyi Jiang,Xuetong Du
出处
期刊:Nondestructive Testing and Evaluation [Informa]
卷期号:: 1-26 被引量:1
标识
DOI:10.1080/10589759.2024.2383325
摘要

Rock fracture acoustic emission (AE) signals are commonly used non-destructive testing data in geological exploration, resource exploitation, and engineering fields. However, these signals are often accompanied by noise interference caused by environmental factors. In this study, we propose an enhanced model for denoising rock fracture AE signals, called simplified fully convolutional denoising autoencoder (SFCDAE). This model is based on the denoising autoencoder principle in the field of deep learning neural networks. The SFCDAE model consists of only seven layers, with minimal preprocessing of data input. By comparing denoising performance evaluation indicators, higher peak signal-to-noise ratio (PSNR) and lower root mean square error (RMSE) were achieved. On average, PSNR increased by 5.575% and RMSE decreased by 22.225%. Using simulated environmental noise to validate the model, it was found that the model has good robustness and can remove artefacts from sudden noise. The practical application value of the LSTM classification model was validated using data containing real experimental noise, resulting in a higher classification accuracy of 80.083%. These results indicate that the proposed model has better denoising performance compared to existing intelligent models and has certain practical value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
jeff完成签到,获得积分10
3秒前
5秒前
开胃咖喱完成签到,获得积分10
6秒前
Huzhu发布了新的文献求助10
12秒前
Tania完成签到,获得积分10
15秒前
23秒前
26秒前
27秒前
cometx发布了新的文献求助10
29秒前
31秒前
花陵完成签到 ,获得积分10
57秒前
帅气的熊猫完成签到,获得积分10
59秒前
粽子完成签到,获得积分10
1分钟前
彭于晏应助阿瓜师傅采纳,获得10
1分钟前
1分钟前
不才完成签到,获得积分10
1分钟前
cometx完成签到,获得积分10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
魏欣娜发布了新的文献求助10
1分钟前
1分钟前
去码头整点薯条完成签到,获得积分10
1分钟前
徐per爱豆完成签到 ,获得积分10
2分钟前
caca完成签到,获得积分0
2分钟前
2分钟前
ADcal完成签到 ,获得积分10
2分钟前
2分钟前
badabadaba关注了科研通微信公众号
2分钟前
2分钟前
2分钟前
badabadaba发布了新的文献求助30
3分钟前
星辰大海应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
大模型应助科研通管家采纳,获得10
3分钟前
金沐栋发布了新的文献求助10
3分钟前
3分钟前
濮阳灵竹完成签到,获得积分10
3分钟前
魏欣娜发布了新的文献求助10
4分钟前
左左曦完成签到,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
上海破产法庭破产实务案例精选(2019-2024) 500
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5476330
求助须知:如何正确求助?哪些是违规求助? 4577995
关于积分的说明 14363306
捐赠科研通 4505871
什么是DOI,文献DOI怎么找? 2468931
邀请新用户注册赠送积分活动 1456508
关于科研通互助平台的介绍 1430177