亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Ki‐67 evaluation using deep‐learning model‐assisted digital image analysis in breast cancer

人工智能 乳腺癌 医学 切断 数字图像分析 核医学 内科学 癌症 计算机科学 物理 计算机视觉 量子力学
作者
Hirofumi Matsumoto,Ryota Miyata,Yuma Tsuruta,Norihiro Nakada,Ayako Koki,Mikiko Unesoko,Norie Abe,Hisamitsu Zaha
出处
期刊:Histopathology [Wiley]
标识
DOI:10.1111/his.15356
摘要

Aims To test the efficacy of artificial intelligence (AI)‐assisted Ki‐67 digital image analysis in invasive breast carcinoma (IBC) with quantitative assessment of AI model performance. Methods and Results This study used 494 cases of Ki‐67 slide images of IBC core needle biopsies. The methods were divided into two steps: (i) construction of a deep‐learning model (DL); and (ii) DL implementation for Ki‐67 analysis. First, a DL tissue classifier model (DL‐TC) and a DL nuclear detection model (DL‐ND) were constructed using HALO AI DenseNet V2 algorithm with 31,924 annotations in 300 Ki‐67 digital slide images. Whether the class predicted by DL‐TC in the test set was correct compared with the annotation of ground truth at the pixel level was evaluated. Second, DL‐TC‐ and DL‐ND‐assisted digital image analysis (DL‐DIA) was performed in the other 194 luminal‐type cases and correlations with manual counting and clinical outcome were investigated to confirm the accuracy and prognostic potential of DL‐DIA. The performance of DL‐TC was excellent and invasive carcinoma nests were well segmented from other elements (average precision: 0.851; recall: 0.878; F1‐score: 0.858). Ki‐67 index data and the number of nuclei from DL‐DIA were positively correlated with data from manual counting ( ρ = 0.961, and 0.928, respectively). High Ki‐67 index (cutoff 20%) cases showed significantly worse recurrence‐free survival and breast cancer‐specific survival ( P = 0.024, and 0.032, respectively). Conclusion The performances of DL‐TC and DL‐ND were excellent. DL‐DIA demonstrated a high degree of concordance with manual counting of Ki‐67 and the results of this approach have prognostic potential.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
加菲宝宝发布了新的文献求助10
21秒前
cacaldon发布了新的文献求助10
28秒前
科研通AI5应助加菲宝宝采纳,获得10
33秒前
39秒前
田様应助大方的不乐采纳,获得10
40秒前
大个应助cacaldon采纳,获得10
41秒前
ASD123发布了新的文献求助10
45秒前
48秒前
49秒前
50秒前
Mali发布了新的文献求助10
52秒前
小林太郎完成签到,获得积分0
54秒前
三十发布了新的文献求助10
56秒前
香蕉觅云应助Dpd采纳,获得10
1分钟前
三十完成签到,获得积分10
1分钟前
1分钟前
思源应助liudy采纳,获得10
1分钟前
1分钟前
费老三发布了新的文献求助10
1分钟前
1分钟前
ASD123发布了新的文献求助10
1分钟前
小二郎应助ASD123采纳,获得10
2分钟前
水的很厉害完成签到,获得积分10
2分钟前
Akim应助烟消云散采纳,获得10
2分钟前
Kevin完成签到,获得积分10
2分钟前
一木完成签到,获得积分10
2分钟前
2分钟前
2分钟前
Dpd发布了新的文献求助10
2分钟前
liudy发布了新的文献求助10
2分钟前
白华苍松发布了新的文献求助10
2分钟前
liudy发布了新的文献求助10
2分钟前
Dpd完成签到,获得积分10
3分钟前
科研通AI5应助sailingluwl采纳,获得10
3分钟前
3分钟前
sailingluwl发布了新的文献求助10
3分钟前
明亮不乐完成签到,获得积分10
3分钟前
3分钟前
3分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555754
求助须知:如何正确求助?哪些是违规求助? 3131370
关于积分的说明 9390913
捐赠科研通 2831075
什么是DOI,文献DOI怎么找? 1556351
邀请新用户注册赠送积分活动 726502
科研通“疑难数据库(出版商)”最低求助积分说明 715820