Deep Learning and Laser-Based 3-D Pixel-Level Rail Surface Defect Detection Method

人工智能 分割 计算机科学 交叉口(航空) 计算机视觉 深度学习 模块化设计 像素 图像分割 激光器 工程类 光学 操作系统 物理 航空航天工程
作者
Jiaqi Ye,Edward Stewart,Qianyu Chen,Clive Roberts,Amir M. Hajiyavand,Yaguo Lei
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-12 被引量:2
标识
DOI:10.1109/tim.2023.3272033
摘要

Rail surface defect inspection is of particular importance in modern railways. Accurate and efficient surface defect detection approaches support optimized maintenance. This enables safe operation of the railway network. However, the scale and harsh working environments of the railway still pose challenges to existing manual and vision-based inspection methods. Inspired by recent advances in laser measurement and deep learning in computer vision, this paper proposes a laser-based 3D pixel-level rail surface defect detection method that combines high-precision laser measurement data with the concept of deep semantic segmentation. In the proposed method, the rail surface is first measured in 3D using a low-cost 2D laser triangulation sensor. Then, a new deep semantic segmentation network is introduced. The network is composed of a fully convolutional segmentation module and two symmetric mapping modules, which can take 3D laser measurement data as input and output 3D pixel-level defect detection results in an end-to-end manner. The modular design of the network allows the use of various segmentation modules for different applications or scenarios. Experiments on a 3D rail dataset demonstrate the feasibility of the proposed method with a pixel-level detection accuracy measured by mean Intersection over Union (mIoU) of up to 87.9%. The 3D output provides not only location and boundary information but also the 3D characterization of defects, giving an essential reference for further defect management and repair tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
今后应助huhu采纳,获得10
2秒前
3秒前
赘婿应助劳尔与巴萨采纳,获得10
3秒前
3秒前
李健的小迷弟应助morena采纳,获得10
5秒前
7秒前
shardowzx发布了新的文献求助10
7秒前
7秒前
少管我发布了新的文献求助10
8秒前
zhou完成签到,获得积分10
8秒前
9秒前
大模型应助ai zs采纳,获得10
9秒前
神奇阳光发布了新的文献求助10
10秒前
小白完成签到 ,获得积分10
10秒前
123发布了新的文献求助10
11秒前
13秒前
少管我完成签到,获得积分10
13秒前
14秒前
chao发布了新的文献求助10
15秒前
临风完成签到,获得积分10
16秒前
17秒前
太叔灭龙发布了新的文献求助10
17秒前
18秒前
Aurora完成签到,获得积分10
18秒前
orixero应助Gary采纳,获得30
20秒前
21秒前
21秒前
Elevin完成签到,获得积分10
23秒前
23秒前
Ava应助包容的剑采纳,获得10
23秒前
cyy完成签到,获得积分10
25秒前
26秒前
LDDD完成签到,获得积分10
26秒前
糖歌吃瘦发布了新的文献求助10
27秒前
Elevin发布了新的文献求助10
28秒前
samuel完成签到,获得积分10
29秒前
小呆陶陶完成签到 ,获得积分10
29秒前
析界成微发布了新的文献求助10
31秒前
田様应助宗友绿采纳,获得10
32秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146304
求助须知:如何正确求助?哪些是违规求助? 2797763
关于积分的说明 7825201
捐赠科研通 2454079
什么是DOI,文献DOI怎么找? 1306010
科研通“疑难数据库(出版商)”最低求助积分说明 627638
版权声明 601503