Deep Learning and Laser-Based 3-D Pixel-Level Rail Surface Defect Detection Method

人工智能 分割 计算机科学 交叉口(航空) 计算机视觉 深度学习 模块化设计 像素 图像分割 激光器 工程类 光学 操作系统 物理 航空航天工程
作者
Jiaqi Ye,Edward Stewart,Qianyu Chen,Clive Roberts,Amir M. Hajiyavand,Yaguo Lei
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-12 被引量:2
标识
DOI:10.1109/tim.2023.3272033
摘要

Rail surface defect inspection is of particular importance in modern railways. Accurate and efficient surface defect detection approaches support optimized maintenance. This enables safe operation of the railway network. However, the scale and harsh working environments of the railway still pose challenges to existing manual and vision-based inspection methods. Inspired by recent advances in laser measurement and deep learning in computer vision, this paper proposes a laser-based 3D pixel-level rail surface defect detection method that combines high-precision laser measurement data with the concept of deep semantic segmentation. In the proposed method, the rail surface is first measured in 3D using a low-cost 2D laser triangulation sensor. Then, a new deep semantic segmentation network is introduced. The network is composed of a fully convolutional segmentation module and two symmetric mapping modules, which can take 3D laser measurement data as input and output 3D pixel-level defect detection results in an end-to-end manner. The modular design of the network allows the use of various segmentation modules for different applications or scenarios. Experiments on a 3D rail dataset demonstrate the feasibility of the proposed method with a pixel-level detection accuracy measured by mean Intersection over Union (mIoU) of up to 87.9%. The 3D output provides not only location and boundary information but also the 3D characterization of defects, giving an essential reference for further defect management and repair tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助xiaoyezi123采纳,获得10
刚刚
刚刚
刚刚
刚刚
1秒前
林夕发布了新的文献求助10
1秒前
缥缈逍遥完成签到 ,获得积分10
2秒前
LQQ发布了新的文献求助10
2秒前
smart发布了新的文献求助10
2秒前
碧蓝紫雪完成签到,获得积分10
3秒前
pluto应助w1x2123采纳,获得10
3秒前
CodeCraft应助ZG采纳,获得10
4秒前
Pytong完成签到,获得积分20
4秒前
4秒前
5秒前
6秒前
研友_nqaogn发布了新的文献求助10
6秒前
林夕完成签到,获得积分10
6秒前
执着的幻柏完成签到,获得积分10
6秒前
7秒前
啾啾完成签到,获得积分10
7秒前
7秒前
8秒前
伈X发布了新的文献求助10
9秒前
吴阳完成签到,获得积分10
9秒前
9秒前
Betty发布了新的文献求助10
9秒前
10秒前
11秒前
CodeCraft应助新羽采纳,获得10
12秒前
12秒前
xiaoyezi123发布了新的文献求助10
12秒前
成就初阳发布了新的文献求助10
13秒前
JingP发布了新的文献求助10
13秒前
闪闪的妙竹完成签到 ,获得积分10
14秒前
冷静水蓝发布了新的文献求助10
14秒前
wanci应助葛老四采纳,获得10
14秒前
一口蛋黄苏完成签到,获得积分20
15秒前
赘婿应助yiyi采纳,获得10
16秒前
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952150
求助须知:如何正确求助?哪些是违规求助? 3497551
关于积分的说明 11088037
捐赠科研通 3228178
什么是DOI,文献DOI怎么找? 1784700
邀请新用户注册赠送积分活动 868855
科研通“疑难数据库(出版商)”最低求助积分说明 801230