亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Using a CT Angiography Artificial Intelligence Carotid Plaque Morphology Model to Predict Stroke

医学 颈动脉内膜切除术 狭窄 冲程(发动机) 放射科 血管造影 接收机工作特性 阿卡克信息准则 计算机断层血管造影 内科学 机器学习 计算机科学 机械工程 工程类
作者
Rohini J. Patel,Daniel Willie-Permor,Sina Zarrintan,Austin Fan,Mahmoud B. Malas
出处
期刊:Journal of Vascular Surgery [Elsevier BV]
卷期号:77 (6): e278-e279
标识
DOI:10.1016/j.jvs.2023.03.388
摘要

The gold standard for determining carotid artery stenosis is to calculate stenosis using the North American Symptomatic Carotid Endarterectomy Trial criteria and ultimately plan for medical vs surgical management based on percent stenosis and symptomatic status. Few studies have assessed plaque morphology as an additive tool for stroke prediction. Our study uses an artificial intelligence software in conjunction with a patient's computed tomography (CT) scan of the neck to create a three-dimensional (3D) model of the carotid artery and assess plaque morphology including calcification, intraplaque hemorrhage, matrix, and perivascular adipose tissue. Our goal was to create a predictive model inclusive of plaque morphology. This is a retrospective review of a single tertiary institution from 2010 to 2021. Patients with a CT angiography head/neck and a diagnosis of carotid artery stenosis were included in our analysis. Each CT scan was run through a third-party software to create a 3D image for plaque visibility and analysis. We used a stepwise backward regression to select variables for inclusion in our prediction models. Model discrimination was assessed with receiver operating characteristic curves (AUC) and the discrimination slope. Additionally, calibration was performed and the model with the least Akaike information criterion (AIC) was selected. Our primary outcome was all cause mortality and stroke. Our sample included 366 patients over the 11-year study. We created three models to predict mortality/stroke: model A using only clinical variables, model B using only plaque morphology software variables, and model C using both clinical and software variables. Model A was created using age, sex, peripheral arterial disease, hyperlipidemia, body mass index, chronic obstructive pulmonary disease, and history of transient ischemic attack or stroke and was found to have an AUC of 0.737and AIC of 285.4. Model B was created using perivascular adipose tissue volume, cross sectional lumen area, calcified volume, and target lesion length and was found to have an AUC of 0.644 and AIC of 304.8. Finally, model C combined both clinical and software variables and included age, sex, matrix volume, history of transient ischemic attack/stroke, body mass index, perivascular adipose tissue, lipid rich necrotic core, chronic obstructive pulmonary disease, and hyperlipidemia and was found to have an AUC of 0.759 and the least AIC of 277.6 (Figs 1 and 2). Our models demonstrate that combining both clinical factors and plaque morphology creates the best model to predict a patient's risk for all-cause mortality and stroke from carotid artery stenosis. Prospective studies are needed to validate our findings.Fig 2Model C: clinical and software variables calibration plot.View Large Image Figure ViewerDownload Hi-res image Download (PPT)
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BBQ完成签到,获得积分10
56秒前
科研通AI5应助hahaha123213123采纳,获得10
1分钟前
Tashanzhishi发布了新的文献求助10
1分钟前
1分钟前
Tashanzhishi完成签到,获得积分10
1分钟前
1分钟前
576-576完成签到 ,获得积分10
2分钟前
2分钟前
没有几十亿完成签到,获得积分10
2分钟前
2分钟前
2分钟前
虾青素应助王英俊采纳,获得10
2分钟前
JavedAli完成签到,获得积分10
2分钟前
ok123完成签到 ,获得积分10
2分钟前
慕青应助Ha采纳,获得10
3分钟前
卓初露完成签到 ,获得积分10
3分钟前
3分钟前
Ha完成签到,获得积分20
3分钟前
Ha发布了新的文献求助10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
所所应助科研通管家采纳,获得10
3分钟前
迷茫的一代完成签到,获得积分10
4分钟前
薛清棵发布了新的文献求助10
4分钟前
Alisha完成签到,获得积分10
5分钟前
5分钟前
HD发布了新的文献求助10
5分钟前
5分钟前
5分钟前
HD完成签到,获得积分10
5分钟前
GPTea应助科研通管家采纳,获得20
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
GPTea应助科研通管家采纳,获得20
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
李爱国应助不是小苦瓜采纳,获得10
5分钟前
不是小苦瓜完成签到,获得积分20
5分钟前
6分钟前
yangyueqiong发布了新的文献求助10
6分钟前
yangyueqiong完成签到,获得积分10
6分钟前
zm完成签到 ,获得积分10
7分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5199530
求助须知:如何正确求助?哪些是违规求助? 4380069
关于积分的说明 13638812
捐赠科研通 4236529
什么是DOI,文献DOI怎么找? 2324113
邀请新用户注册赠送积分活动 1322112
关于科研通互助平台的介绍 1273438