重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Using a CT Angiography Artificial Intelligence Carotid Plaque Morphology Model to Predict Stroke

医学 颈动脉内膜切除术 狭窄 冲程(发动机) 放射科 血管造影 接收机工作特性 阿卡克信息准则 计算机断层血管造影 动脉内膜切除术 内科学 机器学习 计算机科学 机械工程 工程类
作者
Rohini J. Patel,Daniel Willie-Permor,Sina Zarrintan,Austin Fan,Mahmoud B. Malas
出处
期刊:Journal of Vascular Surgery [Elsevier]
卷期号:77 (6): e278-e279
标识
DOI:10.1016/j.jvs.2023.03.388
摘要

The gold standard for determining carotid artery stenosis is to calculate stenosis using the North American Symptomatic Carotid Endarterectomy Trial criteria and ultimately plan for medical vs surgical management based on percent stenosis and symptomatic status. Few studies have assessed plaque morphology as an additive tool for stroke prediction. Our study uses an artificial intelligence software in conjunction with a patient's computed tomography (CT) scan of the neck to create a three-dimensional (3D) model of the carotid artery and assess plaque morphology including calcification, intraplaque hemorrhage, matrix, and perivascular adipose tissue. Our goal was to create a predictive model inclusive of plaque morphology. This is a retrospective review of a single tertiary institution from 2010 to 2021. Patients with a CT angiography head/neck and a diagnosis of carotid artery stenosis were included in our analysis. Each CT scan was run through a third-party software to create a 3D image for plaque visibility and analysis. We used a stepwise backward regression to select variables for inclusion in our prediction models. Model discrimination was assessed with receiver operating characteristic curves (AUC) and the discrimination slope. Additionally, calibration was performed and the model with the least Akaike information criterion (AIC) was selected. Our primary outcome was all cause mortality and stroke. Our sample included 366 patients over the 11-year study. We created three models to predict mortality/stroke: model A using only clinical variables, model B using only plaque morphology software variables, and model C using both clinical and software variables. Model A was created using age, sex, peripheral arterial disease, hyperlipidemia, body mass index, chronic obstructive pulmonary disease, and history of transient ischemic attack or stroke and was found to have an AUC of 0.737and AIC of 285.4. Model B was created using perivascular adipose tissue volume, cross sectional lumen area, calcified volume, and target lesion length and was found to have an AUC of 0.644 and AIC of 304.8. Finally, model C combined both clinical and software variables and included age, sex, matrix volume, history of transient ischemic attack/stroke, body mass index, perivascular adipose tissue, lipid rich necrotic core, chronic obstructive pulmonary disease, and hyperlipidemia and was found to have an AUC of 0.759 and the least AIC of 277.6 (Figs 1 and 2). Our models demonstrate that combining both clinical factors and plaque morphology creates the best model to predict a patient's risk for all-cause mortality and stroke from carotid artery stenosis. Prospective studies are needed to validate our findings.Fig 2Model C: clinical and software variables calibration plot.View Large Image Figure ViewerDownload Hi-res image Download (PPT)
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
软的发布了新的文献求助10
1秒前
1秒前
赘婿应助galaxy采纳,获得10
1秒前
1秒前
duuu完成签到 ,获得积分20
1秒前
ww完成签到,获得积分10
1秒前
Prowler发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
3秒前
zuolan完成签到,获得积分10
3秒前
3秒前
wzc完成签到,获得积分10
4秒前
俏皮梦桃完成签到,获得积分20
4秒前
123发布了新的文献求助30
4秒前
5秒前
赵真完成签到,获得积分10
5秒前
思源应助caizhizhao采纳,获得10
6秒前
火星上的香水关注了科研通微信公众号
6秒前
CipherSage应助pphhhhaannn采纳,获得10
7秒前
tanhaowen发布了新的文献求助10
7秒前
wlx完成签到,获得积分10
7秒前
俏皮梦桃发布了新的文献求助10
8秒前
冷静富发布了新的文献求助10
8秒前
miu完成签到,获得积分10
8秒前
贪玩若血发布了新的文献求助10
8秒前
8秒前
无极微光应助山野采纳,获得20
9秒前
9秒前
9秒前
12345完成签到,获得积分10
10秒前
Mine_cherry关注了科研通微信公众号
10秒前
10秒前
杨洋完成签到,获得积分10
10秒前
10秒前
海浪完成签到,获得积分10
11秒前
四圆儿完成签到 ,获得积分10
11秒前
顾矜应助舒心的柚子采纳,获得10
11秒前
悦耳黑猫完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466870
求助须知:如何正确求助?哪些是违规求助? 4570586
关于积分的说明 14326244
捐赠科研通 4497151
什么是DOI,文献DOI怎么找? 2463752
邀请新用户注册赠送积分活动 1452682
关于科研通互助平台的介绍 1427605