已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Using a CT Angiography Artificial Intelligence Carotid Plaque Morphology Model to Predict Stroke

医学 颈动脉内膜切除术 狭窄 冲程(发动机) 放射科 血管造影 接收机工作特性 阿卡克信息准则 计算机断层血管造影 动脉内膜切除术 内科学 机器学习 计算机科学 机械工程 工程类
作者
Rohini J. Patel,Daniel Willie-Permor,Sina Zarrintan,Austin Fan,Mahmoud B. Malas
出处
期刊:Journal of Vascular Surgery [Elsevier]
卷期号:77 (6): e278-e279
标识
DOI:10.1016/j.jvs.2023.03.388
摘要

The gold standard for determining carotid artery stenosis is to calculate stenosis using the North American Symptomatic Carotid Endarterectomy Trial criteria and ultimately plan for medical vs surgical management based on percent stenosis and symptomatic status. Few studies have assessed plaque morphology as an additive tool for stroke prediction. Our study uses an artificial intelligence software in conjunction with a patient's computed tomography (CT) scan of the neck to create a three-dimensional (3D) model of the carotid artery and assess plaque morphology including calcification, intraplaque hemorrhage, matrix, and perivascular adipose tissue. Our goal was to create a predictive model inclusive of plaque morphology. This is a retrospective review of a single tertiary institution from 2010 to 2021. Patients with a CT angiography head/neck and a diagnosis of carotid artery stenosis were included in our analysis. Each CT scan was run through a third-party software to create a 3D image for plaque visibility and analysis. We used a stepwise backward regression to select variables for inclusion in our prediction models. Model discrimination was assessed with receiver operating characteristic curves (AUC) and the discrimination slope. Additionally, calibration was performed and the model with the least Akaike information criterion (AIC) was selected. Our primary outcome was all cause mortality and stroke. Our sample included 366 patients over the 11-year study. We created three models to predict mortality/stroke: model A using only clinical variables, model B using only plaque morphology software variables, and model C using both clinical and software variables. Model A was created using age, sex, peripheral arterial disease, hyperlipidemia, body mass index, chronic obstructive pulmonary disease, and history of transient ischemic attack or stroke and was found to have an AUC of 0.737and AIC of 285.4. Model B was created using perivascular adipose tissue volume, cross sectional lumen area, calcified volume, and target lesion length and was found to have an AUC of 0.644 and AIC of 304.8. Finally, model C combined both clinical and software variables and included age, sex, matrix volume, history of transient ischemic attack/stroke, body mass index, perivascular adipose tissue, lipid rich necrotic core, chronic obstructive pulmonary disease, and hyperlipidemia and was found to have an AUC of 0.759 and the least AIC of 277.6 (Figs 1 and 2). Our models demonstrate that combining both clinical factors and plaque morphology creates the best model to predict a patient's risk for all-cause mortality and stroke from carotid artery stenosis. Prospective studies are needed to validate our findings.Fig 2Model C: clinical and software variables calibration plot.View Large Image Figure ViewerDownload Hi-res image Download (PPT)
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
liao应助认真的寒香采纳,获得60
1秒前
2秒前
浮游应助zgz采纳,获得10
3秒前
科目三应助醋溜爆肚儿采纳,获得10
3秒前
hhh完成签到 ,获得积分10
5秒前
6秒前
6秒前
852应助Jemma采纳,获得10
7秒前
8秒前
alexhua发布了新的文献求助10
9秒前
9秒前
10秒前
12秒前
鱼羊明完成签到 ,获得积分10
12秒前
泥嚎发布了新的文献求助10
13秒前
15秒前
闪闪香菱发布了新的文献求助10
15秒前
15秒前
FashionBoy应助宋玮采纳,获得10
16秒前
19秒前
kevinqpp发布了新的文献求助10
21秒前
kejiyn完成签到,获得积分10
24秒前
24秒前
动听紫文完成签到,获得积分10
25秒前
我是熊大完成签到 ,获得积分10
25秒前
量子星尘发布了新的文献求助10
25秒前
相龙完成签到,获得积分10
26秒前
xiaolei001应助zgz采纳,获得10
27秒前
梨花诗发布了新的文献求助10
27秒前
宋玮完成签到,获得积分10
27秒前
丘比特应助科研通管家采纳,获得10
27秒前
18635986106应助科研通管家采纳,获得10
27秒前
浮游应助科研通管家采纳,获得10
27秒前
18635986106应助科研通管家采纳,获得10
27秒前
初光应助科研通管家采纳,获得10
28秒前
科研通AI6应助科研通管家采纳,获得10
28秒前
浮游应助科研通管家采纳,获得10
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
浮游应助科研通管家采纳,获得10
28秒前
科研通AI6应助科研通管家采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493371
求助须知:如何正确求助?哪些是违规求助? 4591376
关于积分的说明 14433721
捐赠科研通 4523887
什么是DOI,文献DOI怎么找? 2478514
邀请新用户注册赠送积分活动 1463494
关于科研通互助平台的介绍 1436308