A Novel Gradient Descent Least-Squares (GDLSs) Algorithm for Efficient Gridless Line Spectrum Estimation With Applications in Tomographic SAR Imaging

算法 计算机科学 计算复杂性理论 梯度下降 下降方向 平滑的 行搜索 迭代重建 网格 快照(计算机存储) 最小二乘函数近似 数学优化 估计员 数学 人工智能 计算机视觉 人工神经网络 统计 操作系统 计算机安全 半径 几何学
作者
Ruizhe Shi,Zhe Zhang,Xiaolan Qiu,Chibiao Ding
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-13
标识
DOI:10.1109/tgrs.2023.3273568
摘要

This paper presents a novel efficient method for gridless line spectrum estimation problem with single snapshot and sparse signals, namely the gradient descent least squares (GDLS) method. Conventional single snapshot (a.k.a. single measure vector or SMV) line spectrum estimation methods either rely on smoothing techniques that sacrificing the range and/or azimuth resolution, or adopt the sparsity constraint and utilize compressed sensing (CS) method by defining prior grids and resulting in the off-grid problem. Recently emerged atomic norm minimization (ANM) methods achieved gridless SMV line spectrum estimation, but its computational complexity is extremely high; thus it is practically infeasible in real applications with large problem scales. Our proposed GDLS method reformulates the line spectrum estimations problem into a least squares (LS) estimation problem and solves the corresponding objective function via gradient descent algorithm in an iterative fashion with efficiency. The convergence guarantee, computational complexity, as well as performance analysis for evenly distributed antenna array case are discussed in this paper. Numerical simulations show that the proposed GDLS algorithm outperforms the state-of-the-art methods e.g., CS and ANM, in terms of estimation performances. It can completely avoid the off-grid problem, and its computational complexity is significantly lower than ANM. Our method has been tested in tomographic SAR (TomoSAR) imaging applications via simulated and real experiment data. Results show great potential of the proposed method in terms of better cloud point performance and eliminating the gridding effect.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
落寞白曼发布了新的文献求助10
1秒前
乐乐应助yoon采纳,获得10
1秒前
2秒前
Saluzi发布了新的文献求助10
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
今后应助科研通管家采纳,获得30
4秒前
pcr163应助科研通管家采纳,获得50
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
开心夏云应助科研通管家采纳,获得10
4秒前
大先生完成签到 ,获得积分10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
田様应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得10
4秒前
priss111应助科研通管家采纳,获得30
4秒前
科目三应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
4秒前
李健应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
5秒前
Jun应助科研通管家采纳,获得10
5秒前
研友_Z7WGlZ完成签到,获得积分10
6秒前
9秒前
yemiao完成签到,获得积分10
9秒前
12秒前
科研顺风发布了新的文献求助10
12秒前
所所应助执着的橘子采纳,获得10
12秒前
魏1122完成签到,获得积分20
13秒前
yoon发布了新的文献求助10
13秒前
14秒前
CHANYEOLYANG发布了新的文献求助10
15秒前
在水一方应助yangwei采纳,获得10
15秒前
16秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3163594
求助须知:如何正确求助?哪些是违规求助? 2814540
关于积分的说明 7905002
捐赠科研通 2474033
什么是DOI,文献DOI怎么找? 1317221
科研通“疑难数据库(出版商)”最低求助积分说明 631627
版权声明 602188