A Novel Gradient Descent Least-Squares (GDLSs) Algorithm for Efficient Gridless Line Spectrum Estimation With Applications in Tomographic SAR Imaging

算法 计算机科学 计算复杂性理论 梯度下降 下降方向 平滑的 行搜索 迭代重建 网格 快照(计算机存储) 最小二乘函数近似 数学优化 估计员 数学 人工智能 计算机视觉 人工神经网络 统计 操作系统 计算机安全 半径 几何学
作者
Ruizhe Shi,Zhe Zhang,Xiaolan Qiu,Chibiao Ding
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-13
标识
DOI:10.1109/tgrs.2023.3273568
摘要

This paper presents a novel efficient method for gridless line spectrum estimation problem with single snapshot and sparse signals, namely the gradient descent least squares (GDLS) method. Conventional single snapshot (a.k.a. single measure vector or SMV) line spectrum estimation methods either rely on smoothing techniques that sacrificing the range and/or azimuth resolution, or adopt the sparsity constraint and utilize compressed sensing (CS) method by defining prior grids and resulting in the off-grid problem. Recently emerged atomic norm minimization (ANM) methods achieved gridless SMV line spectrum estimation, but its computational complexity is extremely high; thus it is practically infeasible in real applications with large problem scales. Our proposed GDLS method reformulates the line spectrum estimations problem into a least squares (LS) estimation problem and solves the corresponding objective function via gradient descent algorithm in an iterative fashion with efficiency. The convergence guarantee, computational complexity, as well as performance analysis for evenly distributed antenna array case are discussed in this paper. Numerical simulations show that the proposed GDLS algorithm outperforms the state-of-the-art methods e.g., CS and ANM, in terms of estimation performances. It can completely avoid the off-grid problem, and its computational complexity is significantly lower than ANM. Our method has been tested in tomographic SAR (TomoSAR) imaging applications via simulated and real experiment data. Results show great potential of the proposed method in terms of better cloud point performance and eliminating the gridding effect.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
霍巧凡发布了新的文献求助10
刚刚
beplayer1完成签到,获得积分10
1秒前
棕榈发布了新的文献求助10
2秒前
完美世界应助S1采纳,获得10
2秒前
2秒前
3秒前
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
sophia完成签到,获得积分10
4秒前
4秒前
Lyp888206发布了新的文献求助10
5秒前
6秒前
ll发布了新的文献求助10
7秒前
sophia发布了新的文献求助20
7秒前
复杂绝悟发布了新的文献求助10
8秒前
9秒前
爱雪的猫发布了新的文献求助10
9秒前
9秒前
王倩倩发布了新的文献求助20
11秒前
shary完成签到,获得积分10
11秒前
甜蜜骁发布了新的文献求助30
12秒前
祖老头发布了新的文献求助10
13秒前
英俊的铭应助起司猫采纳,获得10
13秒前
Double完成签到 ,获得积分10
13秒前
科研通AI6应助不安的凡桃采纳,获得10
13秒前
Owen应助棕榈采纳,获得10
15秒前
Sakurasamada发布了新的文献求助20
15秒前
15秒前
白羊完成签到,获得积分10
16秒前
16秒前
薛之谦的猫应助任性白秋采纳,获得10
16秒前
向日葵完成签到 ,获得积分10
16秒前
Lee完成签到,获得积分10
17秒前
17秒前
18秒前
19秒前
Lee发布了新的文献求助10
20秒前
20秒前
潇洒毛给潇洒毛的求助进行了留言
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594501
求助须知:如何正确求助?哪些是违规求助? 4680157
关于积分的说明 14813307
捐赠科研通 4647283
什么是DOI,文献DOI怎么找? 2534960
邀请新用户注册赠送积分活动 1503016
关于科研通互助平台的介绍 1469521