A Novel Gradient Descent Least-Squares (GDLSs) Algorithm for Efficient Gridless Line Spectrum Estimation With Applications in Tomographic SAR Imaging

算法 计算机科学 计算复杂性理论 梯度下降 下降方向 平滑的 行搜索 迭代重建 网格 快照(计算机存储) 最小二乘函数近似 数学优化 估计员 数学 人工智能 计算机视觉 几何学 计算机安全 人工神经网络 半径 操作系统 统计
作者
Ruizhe Shi,Zhe Zhang,Xiaolan Qiu,Chibiao Ding
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-13
标识
DOI:10.1109/tgrs.2023.3273568
摘要

This paper presents a novel efficient method for gridless line spectrum estimation problem with single snapshot and sparse signals, namely the gradient descent least squares (GDLS) method. Conventional single snapshot (a.k.a. single measure vector or SMV) line spectrum estimation methods either rely on smoothing techniques that sacrificing the range and/or azimuth resolution, or adopt the sparsity constraint and utilize compressed sensing (CS) method by defining prior grids and resulting in the off-grid problem. Recently emerged atomic norm minimization (ANM) methods achieved gridless SMV line spectrum estimation, but its computational complexity is extremely high; thus it is practically infeasible in real applications with large problem scales. Our proposed GDLS method reformulates the line spectrum estimations problem into a least squares (LS) estimation problem and solves the corresponding objective function via gradient descent algorithm in an iterative fashion with efficiency. The convergence guarantee, computational complexity, as well as performance analysis for evenly distributed antenna array case are discussed in this paper. Numerical simulations show that the proposed GDLS algorithm outperforms the state-of-the-art methods e.g., CS and ANM, in terms of estimation performances. It can completely avoid the off-grid problem, and its computational complexity is significantly lower than ANM. Our method has been tested in tomographic SAR (TomoSAR) imaging applications via simulated and real experiment data. Results show great potential of the proposed method in terms of better cloud point performance and eliminating the gridding effect.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助芋头采纳,获得10
1秒前
任某人完成签到,获得积分10
2秒前
小叶同学完成签到,获得积分10
2秒前
勇敢的心发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
3秒前
4秒前
4秒前
4秒前
4秒前
Arlene完成签到 ,获得积分10
4秒前
Aryan关注了科研通微信公众号
4秒前
5秒前
5秒前
5秒前
hokin33完成签到,获得积分10
6秒前
小马甲应助菜菜mm采纳,获得10
6秒前
jyk发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
杏杏发布了新的文献求助10
8秒前
笨笨忘幽关注了科研通微信公众号
8秒前
张一一完成签到,获得积分10
9秒前
惜肉龟发布了新的文献求助10
9秒前
9秒前
10秒前
aloopp发布了新的文献求助10
10秒前
10秒前
慕青应助鳗鱼铸海采纳,获得10
11秒前
乐乐应助英俊皮卡丘采纳,获得10
11秒前
思源应助聪慧的雪糕采纳,获得10
12秒前
Ava应助高天雨采纳,获得20
12秒前
yyang发布了新的文献求助10
12秒前
xn发布了新的文献求助10
13秒前
XinChenLee完成签到,获得积分10
13秒前
14秒前
NexusExplorer应助沉静的代桃采纳,获得10
15秒前
15秒前
852应助坦率铅笔采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785120
求助须知:如何正确求助?哪些是违规求助? 5686059
关于积分的说明 15466834
捐赠科研通 4914228
什么是DOI,文献DOI怎么找? 2645117
邀请新用户注册赠送积分活动 1592946
关于科研通互助平台的介绍 1547300