BIP-Tree: Tree Variant With Behavioral Intention Perception for Heterogeneous Trajectory Prediction

树(集合论) 计算机科学 行为建模 弹道 感知 行为模式 人工智能 行人 构造(python库) 节点(物理) 机器学习 心理学 工程类 数学 神经科学 天文 软件工程 物理 数学分析 结构工程 程序设计语言 运输工程
作者
Yuzhen Zhang,Weizhi Guo,Jiang Su,Pei Lv,Mingliang Xu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (9): 9584-9598 被引量:3
标识
DOI:10.1109/tits.2023.3271953
摘要

An insightful understanding and relational reasoning of motion behavior are typical components for trajectory prediction to achieve safe planning when navigating in complex scenarios. Due to the differences in behavioral responses of heterogeneous agents and the existence of chain effect in message passing, an effective prediction method is desired to better acquire potential behavioral intention and model motion behavior. In this paper, we construct a trajectory prediction method to represent and encode the behavioral interactions among heterogeneous agents, called as Tree variant with Behavioral Intention Perception (BIP-Tree). Specifically, a dual-behavior interaction module is presented to deeply understand behavioral intention by simultaneously considering the behavioral perception and behavioral response in spatial interaction. The behavioral perception means that individual acquires behavioral features from interactive objects located in its perception range, while the behavioral response means that each agent makes distinctive reactions to different categories of agents (for example, due to different collision risks caused by pedestrian and vehicle, a pedestrian will respond differently to the interactive agents at the same distance). Meanwhile, we also introduce one new tree variant in message passing stage to enhance the acquisition of potential motion feature, denoting traffic agents as nodes and the interactions among them as tree trunks. The interaction message can be delivered along tree trunks from leaf nodes to root node, to further achieves the chain effect of high-order interactions beyond adjacent entities. Our method is evaluated on several public datasets, such as Apolloscape, nuScenes, Argoverse, SDD, INTERACTION, inD, and Waymo. The extensive experimental results demonstrate that our method can predict more plausible and realistic trajectories with multi-modality. Among them, the best performance is achieved on three datasets. More remarkably, compared with state-of-the-arts, our method achieves significant performance and decreases by at least 13.04% on average ADE and 19.42% on average FDE on inD dataset with four intersections. The dataset and code are available at: htpps://github.com/VTP-TL/BIP-Tree.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
如梦如画发布了新的文献求助10
刚刚
刚刚
称心青亦完成签到,获得积分10
刚刚
老地方完成签到,获得积分10
刚刚
Corn发布了新的文献求助10
1秒前
1秒前
彦黄子孙完成签到,获得积分10
2秒前
丘比特应助安谢采纳,获得10
2秒前
2秒前
JamesPei应助plaaf采纳,获得10
3秒前
老地方发布了新的文献求助10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
yyy发布了新的文献求助10
4秒前
penny发布了新的文献求助10
4秒前
乐呵乐呵发布了新的文献求助10
4秒前
5秒前
5秒前
kk发布了新的文献求助10
5秒前
6秒前
6秒前
你好啊发布了新的文献求助10
7秒前
7秒前
无敌的我发布了新的文献求助10
8秒前
调皮的巧凡完成签到,获得积分10
8秒前
烟花应助难过千易采纳,获得10
8秒前
顺利铃铛发布了新的文献求助10
8秒前
8秒前
8秒前
BINGBING1230发布了新的文献求助10
9秒前
9秒前
lruri张完成签到,获得积分10
10秒前
顺心冰岚发布了新的文献求助10
11秒前
LX发布了新的文献求助10
11秒前
洁净白容发布了新的文献求助10
12秒前
ZMM发布了新的文献求助10
12秒前
上官若男应助此然采纳,获得10
13秒前
13秒前
隐形曼青应助BINGBING1230采纳,获得10
13秒前
薏晓完成签到 ,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424903
求助须知:如何正确求助?哪些是违规求助? 4539135
关于积分的说明 14165791
捐赠科研通 4456231
什么是DOI,文献DOI怎么找? 2444084
邀请新用户注册赠送积分活动 1435140
关于科研通互助平台的介绍 1412492