BIP-Tree: Tree Variant With Behavioral Intention Perception for Heterogeneous Trajectory Prediction

树(集合论) 计算机科学 行为建模 弹道 感知 行为模式 人工智能 行人 构造(python库) 节点(物理) 机器学习 心理学 工程类 数学 神经科学 天文 软件工程 物理 数学分析 结构工程 程序设计语言 运输工程
作者
Yuzhen Zhang,Weizhi Guo,Jiang Su,Pei Lv,Mingliang Xu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (9): 9584-9598 被引量:3
标识
DOI:10.1109/tits.2023.3271953
摘要

An insightful understanding and relational reasoning of motion behavior are typical components for trajectory prediction to achieve safe planning when navigating in complex scenarios. Due to the differences in behavioral responses of heterogeneous agents and the existence of chain effect in message passing, an effective prediction method is desired to better acquire potential behavioral intention and model motion behavior. In this paper, we construct a trajectory prediction method to represent and encode the behavioral interactions among heterogeneous agents, called as Tree variant with Behavioral Intention Perception (BIP-Tree). Specifically, a dual-behavior interaction module is presented to deeply understand behavioral intention by simultaneously considering the behavioral perception and behavioral response in spatial interaction. The behavioral perception means that individual acquires behavioral features from interactive objects located in its perception range, while the behavioral response means that each agent makes distinctive reactions to different categories of agents (for example, due to different collision risks caused by pedestrian and vehicle, a pedestrian will respond differently to the interactive agents at the same distance). Meanwhile, we also introduce one new tree variant in message passing stage to enhance the acquisition of potential motion feature, denoting traffic agents as nodes and the interactions among them as tree trunks. The interaction message can be delivered along tree trunks from leaf nodes to root node, to further achieves the chain effect of high-order interactions beyond adjacent entities. Our method is evaluated on several public datasets, such as Apolloscape, nuScenes, Argoverse, SDD, INTERACTION, inD, and Waymo. The extensive experimental results demonstrate that our method can predict more plausible and realistic trajectories with multi-modality. Among them, the best performance is achieved on three datasets. More remarkably, compared with state-of-the-arts, our method achieves significant performance and decreases by at least 13.04% on average ADE and 19.42% on average FDE on inD dataset with four intersections. The dataset and code are available at: htpps://github.com/VTP-TL/BIP-Tree.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bbh发布了新的文献求助10
1秒前
1秒前
yiy37完成签到,获得积分10
2秒前
2秒前
酷波er应助naomi采纳,获得10
2秒前
2秒前
李健的小迷弟应助Moses采纳,获得10
2秒前
2秒前
2秒前
在水一方应助chen采纳,获得30
3秒前
3秒前
3秒前
田様应助洋洋洋采纳,获得10
4秒前
wangmanli发布了新的文献求助10
5秒前
核桃发布了新的文献求助10
6秒前
科研通AI6应助Qqqq采纳,获得30
6秒前
6秒前
咕咕发布了新的文献求助10
6秒前
7秒前
dhh发布了新的文献求助30
7秒前
linglingling完成签到 ,获得积分10
8秒前
跬步一积完成签到,获得积分10
8秒前
无名花生发布了新的文献求助10
8秒前
9秒前
脑洞疼应助震动的幻柏采纳,获得30
9秒前
嘤嘤发布了新的文献求助10
9秒前
共享精神应助自然的千青采纳,获得10
10秒前
10秒前
11111发布了新的文献求助10
10秒前
11秒前
Xgg发布了新的文献求助20
11秒前
12秒前
ttt发布了新的文献求助10
12秒前
wtian完成签到,获得积分10
12秒前
打打应助玉yu采纳,获得10
12秒前
华仔应助bzzx采纳,获得10
12秒前
14秒前
insane发布了新的文献求助10
14秒前
旺旺小面包完成签到 ,获得积分10
14秒前
缓慢咖啡完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4960895
求助须知:如何正确求助?哪些是违规求助? 4221348
关于积分的说明 13146580
捐赠科研通 4005074
什么是DOI,文献DOI怎么找? 2191860
邀请新用户注册赠送积分活动 1205932
关于科研通互助平台的介绍 1116970