BIP-Tree: Tree Variant With Behavioral Intention Perception for Heterogeneous Trajectory Prediction

树(集合论) 计算机科学 行为建模 弹道 感知 行为模式 人工智能 行人 构造(python库) 节点(物理) 机器学习 心理学 工程类 数学 神经科学 天文 软件工程 物理 数学分析 结构工程 程序设计语言 运输工程
作者
Yuzhen Zhang,Weizhi Guo,Jiang Su,Pei Lv,Mingliang Xu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (9): 9584-9598 被引量:3
标识
DOI:10.1109/tits.2023.3271953
摘要

An insightful understanding and relational reasoning of motion behavior are typical components for trajectory prediction to achieve safe planning when navigating in complex scenarios. Due to the differences in behavioral responses of heterogeneous agents and the existence of chain effect in message passing, an effective prediction method is desired to better acquire potential behavioral intention and model motion behavior. In this paper, we construct a trajectory prediction method to represent and encode the behavioral interactions among heterogeneous agents, called as Tree variant with Behavioral Intention Perception (BIP-Tree). Specifically, a dual-behavior interaction module is presented to deeply understand behavioral intention by simultaneously considering the behavioral perception and behavioral response in spatial interaction. The behavioral perception means that individual acquires behavioral features from interactive objects located in its perception range, while the behavioral response means that each agent makes distinctive reactions to different categories of agents (for example, due to different collision risks caused by pedestrian and vehicle, a pedestrian will respond differently to the interactive agents at the same distance). Meanwhile, we also introduce one new tree variant in message passing stage to enhance the acquisition of potential motion feature, denoting traffic agents as nodes and the interactions among them as tree trunks. The interaction message can be delivered along tree trunks from leaf nodes to root node, to further achieves the chain effect of high-order interactions beyond adjacent entities. Our method is evaluated on several public datasets, such as Apolloscape, nuScenes, Argoverse, SDD, INTERACTION, inD, and Waymo. The extensive experimental results demonstrate that our method can predict more plausible and realistic trajectories with multi-modality. Among them, the best performance is achieved on three datasets. More remarkably, compared with state-of-the-arts, our method achieves significant performance and decreases by at least 13.04% on average ADE and 19.42% on average FDE on inD dataset with four intersections. The dataset and code are available at: htpps://github.com/VTP-TL/BIP-Tree.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
生命科学的第一推动力完成签到 ,获得积分10
1秒前
1秒前
Shane完成签到,获得积分10
1秒前
1秒前
Kathy完成签到,获得积分10
1秒前
山雀发布了新的文献求助10
1秒前
2秒前
hahhhhhh2完成签到,获得积分10
2秒前
12完成签到 ,获得积分10
2秒前
追光完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
sure完成签到 ,获得积分10
4秒前
Kathy发布了新的文献求助10
5秒前
zhq完成签到,获得积分20
5秒前
5秒前
丘比特应助陈艳林采纳,获得10
6秒前
chenhua5460发布了新的文献求助10
6秒前
张阳发布了新的文献求助10
7秒前
谢许杯商应助Mansis采纳,获得10
8秒前
虎啊虎啊发布了新的文献求助10
8秒前
8秒前
9秒前
szh123完成签到 ,获得积分10
9秒前
feimengxia完成签到 ,获得积分10
9秒前
wanci应助Garfieldlilac采纳,获得10
10秒前
Jasper应助像个小蛤蟆采纳,获得10
10秒前
地平完成签到,获得积分10
11秒前
丘比特应助如初采纳,获得10
11秒前
12秒前
jichao完成签到,获得积分10
12秒前
sevenseven完成签到,获得积分10
13秒前
lzg完成签到,获得积分10
13秒前
zhuxiaonian完成签到,获得积分10
13秒前
汤圆完成签到,获得积分10
14秒前
小蘑菇应助喜庆采纳,获得10
14秒前
周娅敏发布了新的文献求助10
14秒前
15秒前
sgs完成签到,获得积分10
15秒前
自行输入昵称完成签到 ,获得积分10
16秒前
戚薇发布了新的文献求助10
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582