BIP-Tree: Tree Variant With Behavioral Intention Perception for Heterogeneous Trajectory Prediction

树(集合论) 计算机科学 行为建模 弹道 感知 行为模式 人工智能 行人 构造(python库) 节点(物理) 机器学习 心理学 工程类 数学 神经科学 运输工程 数学分析 物理 软件工程 结构工程 天文 程序设计语言
作者
Yuzhen Zhang,Weizhi Guo,Jiang Su,Pei Lv,Mingliang Xu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (9): 9584-9598 被引量:3
标识
DOI:10.1109/tits.2023.3271953
摘要

An insightful understanding and relational reasoning of motion behavior are typical components for trajectory prediction to achieve safe planning when navigating in complex scenarios. Due to the differences in behavioral responses of heterogeneous agents and the existence of chain effect in message passing, an effective prediction method is desired to better acquire potential behavioral intention and model motion behavior. In this paper, we construct a trajectory prediction method to represent and encode the behavioral interactions among heterogeneous agents, called as Tree variant with Behavioral Intention Perception (BIP-Tree). Specifically, a dual-behavior interaction module is presented to deeply understand behavioral intention by simultaneously considering the behavioral perception and behavioral response in spatial interaction. The behavioral perception means that individual acquires behavioral features from interactive objects located in its perception range, while the behavioral response means that each agent makes distinctive reactions to different categories of agents (for example, due to different collision risks caused by pedestrian and vehicle, a pedestrian will respond differently to the interactive agents at the same distance). Meanwhile, we also introduce one new tree variant in message passing stage to enhance the acquisition of potential motion feature, denoting traffic agents as nodes and the interactions among them as tree trunks. The interaction message can be delivered along tree trunks from leaf nodes to root node, to further achieves the chain effect of high-order interactions beyond adjacent entities. Our method is evaluated on several public datasets, such as Apolloscape, nuScenes, Argoverse, SDD, INTERACTION, inD, and Waymo. The extensive experimental results demonstrate that our method can predict more plausible and realistic trajectories with multi-modality. Among them, the best performance is achieved on three datasets. More remarkably, compared with state-of-the-arts, our method achieves significant performance and decreases by at least 13.04% on average ADE and 19.42% on average FDE on inD dataset with four intersections. The dataset and code are available at: htpps://github.com/VTP-TL/BIP-Tree.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
研友_VZG7GZ应助Sherry采纳,获得10
1秒前
4秒前
4秒前
维C橙子发布了新的文献求助10
5秒前
CipherSage应助小吴采纳,获得10
5秒前
6秒前
6秒前
123123完成签到 ,获得积分10
8秒前
8秒前
8秒前
乔佳佳发布了新的文献求助10
8秒前
9秒前
10秒前
我不困发布了新的文献求助10
10秒前
10秒前
逍遥完成签到,获得积分10
11秒前
哈哈哈发布了新的文献求助10
11秒前
QiWei完成签到 ,获得积分10
11秒前
77发布了新的文献求助10
11秒前
Amanda完成签到,获得积分10
11秒前
12秒前
顾矜应助细腻的飞雪采纳,获得10
13秒前
13秒前
杳鸢应助不敢装睡采纳,获得10
13秒前
英姑应助喵姐采纳,获得10
14秒前
杳鸢应助不敢装睡采纳,获得10
14秒前
杳鸢应助不敢装睡采纳,获得10
14秒前
杳鸢应助不敢装睡采纳,获得10
14秒前
杳鸢应助不敢装睡采纳,获得30
14秒前
杳鸢应助不敢装睡采纳,获得30
14秒前
杳鸢应助不敢装睡采纳,获得30
14秒前
蔡佰航发布了新的文献求助10
14秒前
dan1029发布了新的文献求助10
14秒前
夏来应助搞怪平凡采纳,获得10
15秒前
充电宝应助实验室杂工采纳,获得10
16秒前
guoguo完成签到 ,获得积分10
16秒前
辣辣发布了新的文献求助20
16秒前
17秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462367
求助须知:如何正确求助?哪些是违规求助? 3055905
关于积分的说明 9049830
捐赠科研通 2745482
什么是DOI,文献DOI怎么找? 1506365
科研通“疑难数据库(出版商)”最低求助积分说明 696092
邀请新用户注册赠送积分活动 695620