亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

BIP-Tree: Tree Variant With Behavioral Intention Perception for Heterogeneous Trajectory Prediction

树(集合论) 计算机科学 行为建模 弹道 感知 行为模式 人工智能 行人 构造(python库) 节点(物理) 机器学习 心理学 工程类 数学 神经科学 天文 软件工程 物理 数学分析 结构工程 程序设计语言 运输工程
作者
Yuzhen Zhang,Weizhi Guo,Junning Su,Pei Lv,Mingliang Xu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (9): 9584-9598 被引量:13
标识
DOI:10.1109/tits.2023.3271953
摘要

An insightful understanding and relational reasoning of motion behavior are typical components for trajectory prediction to achieve safe planning when navigating in complex scenarios. Due to the differences in behavioral responses of heterogeneous agents and the existence of chain effect in message passing, an effective prediction method is desired to better acquire potential behavioral intention and model motion behavior. In this paper, we construct a trajectory prediction method to represent and encode the behavioral interactions among heterogeneous agents, called as Tree variant with Behavioral Intention Perception (BIP-Tree). Specifically, a dual-behavior interaction module is presented to deeply understand behavioral intention by simultaneously considering the behavioral perception and behavioral response in spatial interaction. The behavioral perception means that individual acquires behavioral features from interactive objects located in its perception range, while the behavioral response means that each agent makes distinctive reactions to different categories of agents (for example, due to different collision risks caused by pedestrian and vehicle, a pedestrian will respond differently to the interactive agents at the same distance). Meanwhile, we also introduce one new tree variant in message passing stage to enhance the acquisition of potential motion feature, denoting traffic agents as nodes and the interactions among them as tree trunks. The interaction message can be delivered along tree trunks from leaf nodes to root node, to further achieves the chain effect of high-order interactions beyond adjacent entities. Our method is evaluated on several public datasets, such as Apolloscape, nuScenes, Argoverse, SDD, INTERACTION, inD, and Waymo. The extensive experimental results demonstrate that our method can predict more plausible and realistic trajectories with multi-modality. Among them, the best performance is achieved on three datasets. More remarkably, compared with state-of-the-arts, our method achieves significant performance and decreases by at least 13.04% on average ADE and 19.42% on average FDE on inD dataset with four intersections. The dataset and code are available at: htpps://github.com/VTP-TL/BIP-Tree.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
21秒前
万能图书馆应助猫抓板采纳,获得10
37秒前
44秒前
猫抓板发布了新的文献求助10
49秒前
路人应助Magali采纳,获得200
51秒前
小蘑菇应助猫抓板采纳,获得10
59秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
大园完成签到 ,获得积分10
1分钟前
1分钟前
领导范儿应助Magali采纳,获得150
1分钟前
猫抓板发布了新的文献求助10
1分钟前
昭昭完成签到,获得积分10
1分钟前
1分钟前
Magali发布了新的文献求助150
1分钟前
1分钟前
昭昭发布了新的文献求助10
1分钟前
1分钟前
1分钟前
爆米花应助昭昭采纳,获得10
1分钟前
猫抓板发布了新的文献求助10
1分钟前
共享精神应助猫抓板采纳,获得10
2分钟前
2分钟前
猫抓板发布了新的文献求助10
2分钟前
Qing完成签到 ,获得积分10
2分钟前
JamesPei应助猫抓板采纳,获得10
2分钟前
AixLeft完成签到 ,获得积分10
2分钟前
3分钟前
猫抓板发布了新的文献求助10
3分钟前
把饭拼好给你完成签到 ,获得积分10
3分钟前
善学以致用应助猫抓板采纳,获得10
3分钟前
3分钟前
许晴完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
猫抓板发布了新的文献求助10
4分钟前
孤独又灿烂的夜猫子完成签到 ,获得积分10
4分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Exosomes Pipeline Insight, 2025 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671228
求助须知:如何正确求助?哪些是违规求助? 4912699
关于积分的说明 15134266
捐赠科研通 4830020
什么是DOI,文献DOI怎么找? 2586614
邀请新用户注册赠送积分活动 1540279
关于科研通互助平台的介绍 1498455