质子交换膜燃料电池
电催化剂
极化(电化学)
人工神经网络
膜电极组件
计算机科学
决策树
电极
燃料电池
人工智能
电化学
生物系统
机器学习
材料科学
化学
工程类
化学工程
电解质
生物
物理化学
作者
Rui Ding,Ran Wang,Yiqin Ding,Wenjuan Yin,Yide Liu,Jia Li,Jianguo Liu
标识
DOI:10.1002/anie.202006928
摘要
Abstract Traditionally, a larger number of experiments are needed to optimize the performance of the membrane electrode assembly (MEA) in proton‐exchange membrane fuel cells (PEMFCs) since it involves complex electrochemical, thermodynamic, and hydrodynamic processes. Herein, we introduce artificial intelligence (AI)‐aided models for the first time to determine key parameters for nonprecious metal electrocatalyst‐based PEMFCs, thus avoiding unnecessary experiments during MEA development. Among 16 competing algorithms widely applied in the AI field, decision tree and XGBoost showed good accuracy (86.7 % and 91.4 %) in determining key factors for high‐performance MEA. Artificial neural network (ANN) shows the best accuracy (R2=0.9621) in terms of predictions of the maximum power density and a decent reproducibility (R2>0.99) on uncharted I – V polarization curves with 26 input features. Hence, machine learning is shown to be an excellent method for improving the efficiency of MEA design and experiments.
科研通智能强力驱动
Strongly Powered by AbleSci AI