A Broad Generative Network for Two-Stage Image Outpainting

计算机科学 平滑的 人工智能 鉴别器 图像(数学) 核(代数) 阶段(地层学) 模式识别(心理学) 机器学习 计算机视觉 数学 电信 古生物学 组合数学 探测器 生物
作者
Zongyan Zhang,Haohan Weng,Tong Zhang,C. L. Philip Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (9): 12731-12745 被引量:3
标识
DOI:10.1109/tnnls.2023.3264617
摘要

Image outpainting is a challenge for image processing since it needs to produce a big scenery image from a few patches. In general, two-stage frameworks are utilized to unpack complex tasks and complete them step-by-step. However, the time consumption caused by training two networks will hinder the method from adequately optimizing the parameters of networks with limited iterations. In this article, a broad generative network (BG-Net) for two-stage image outpainting is proposed. As a reconstruction network in the first stage, it can be quickly trained by utilizing ridge regression optimization. In the second stage, a seam line discriminator (SLD) is designed for transition smoothing, which greatly improves the quality of images. Compared with state-of-the-art image outpainting methods, the experimental results on the Wiki-Art and Place365 datasets show that the proposed method achieves the best results under evaluation metrics: the Fréchet inception distance (FID) and the kernel inception distance (KID). The proposed BG-Net has good reconstructive ability with faster training speed than those of deep learning-based networks. It reduces the overall training duration of the two-stage framework to the same level as the one-stage framework. Furthermore, the proposed method is adapted to image recurrent outpainting, demonstrating the powerful associative drawing capability of the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jcc发布了新的文献求助10
刚刚
菜青虫完成签到,获得积分10
刚刚
刚刚
pingze111完成签到,获得积分10
1秒前
1秒前
爆米花应助科研通管家采纳,获得10
2秒前
pluto应助科研通管家采纳,获得20
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得20
2秒前
pluto应助科研通管家采纳,获得20
2秒前
田様应助科研通管家采纳,获得10
2秒前
cc应助科研通管家采纳,获得20
3秒前
大模型应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
英姑应助科研通管家采纳,获得10
3秒前
今后应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
李健应助科研通管家采纳,获得10
3秒前
3秒前
李健应助阳子采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
天天快乐应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
Akim应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
JamesPei应助科研通管家采纳,获得30
4秒前
4秒前
乐乐应助tw0125采纳,获得10
4秒前
现代山雁完成签到 ,获得积分10
4秒前
4秒前
憂xqc发布了新的文献求助10
5秒前
5秒前
kk发布了新的文献求助10
6秒前
阔达东蒽完成签到,获得积分10
6秒前
鸭屎香菜发布了新的文献求助10
6秒前
7秒前
ding应助nana湘采纳,获得10
7秒前
乐乐应助激动的一手采纳,获得10
8秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3765494
求助须知:如何正确求助?哪些是违规求助? 3310019
关于积分的说明 10153232
捐赠科研通 3025386
什么是DOI,文献DOI怎么找? 1660505
邀请新用户注册赠送积分活动 793367
科研通“疑难数据库(出版商)”最低求助积分说明 755584