Heat transfer characteristics of nanofluid under the action of magnetic field based on molecular dynamics and flow states

纳米流体 传热 磁场 对流换热 传热系数 机械 材料科学 热磁对流 丘吉尔-伯恩斯坦方程 边界层 热力学 物理 努塞尔数 湍流 雷诺数 量子力学
作者
Xilong Zhang,Junhao Li,Yongliang Zhang
出处
期刊:Numerical Heat Transfer Part A-applications [Informa]
卷期号:85 (4): 491-515 被引量:6
标识
DOI:10.1080/10407782.2023.2187904
摘要

Theoretical analysis, numerical simulations, and experimental studies are used to comprehensively investigate the changes in the heat transfer characteristics of Fe3O4–water magnetic nanofluid under different types of magnetic fields and the heat transfer mechanism, providing new ideas for its practical application. By combining the fundamental conservation theorem and the Boussinesq approximation, dimensionless control equations have been established. The analysis of the variation pattern of the calculated values of the source terms under different boundary conditions, as well as the order of magnitude analysis, concludes that: the enhanced trend of Brownian motion and thermophoretic motion is the main reason for the enhanced heat transfer capability of the magnetic nanofluid; where the thermophoretic motion contributes slightly more to the heat transfer; the increase in Joule heat is the reason for the further enhancement of the heat transfer capability by the magnetic field. Volume fraction, temperature, and magnetic field strength are positively correlated with the average convective heat transfer coefficient. The reason for magnetic fields to enhance heat transfer is revealed by the deflection of the magnetic nanofluid by the magnetic body flow under local magnetic fields to form localized reflux. The alternating magnetic field further enhances the ability of magnetic fields to enhance heat transfer in magnetic nanofluids. Overall, the effect of the applied magnetic field on the motion of the magnetic nanoparticles causes the disruption of the thermal boundary layer, which is responsible for the enhanced heat transfer capacity of magnetic nanofluids.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助小密母采纳,获得10
刚刚
4秒前
666完成签到,获得积分20
4秒前
李健的小迷弟应助bitter采纳,获得10
4秒前
Dr_zsc完成签到,获得积分10
4秒前
6秒前
7秒前
7秒前
666发布了新的文献求助10
7秒前
简简简发布了新的文献求助10
8秒前
8秒前
9秒前
黄景阳完成签到 ,获得积分10
9秒前
生椰拿铁完成签到,获得积分10
10秒前
ssj完成签到,获得积分10
10秒前
白云四季发布了新的文献求助10
11秒前
归尘发布了新的文献求助10
11秒前
11秒前
稳重听双发布了新的文献求助10
11秒前
xia完成签到 ,获得积分10
12秒前
12秒前
Akim应助迷人的帅哥采纳,获得10
13秒前
14秒前
木又应助刘隽轩采纳,获得10
14秒前
量子星尘发布了新的文献求助30
15秒前
简简简完成签到,获得积分10
16秒前
17秒前
action完成签到 ,获得积分10
17秒前
17秒前
学不懂数学完成签到,获得积分10
18秒前
20秒前
Loki完成签到,获得积分10
20秒前
Tokgo完成签到,获得积分10
20秒前
20秒前
20秒前
慧慧发布了新的文献求助10
22秒前
22秒前
稳重听双完成签到,获得积分10
22秒前
22秒前
海中有月完成签到 ,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424683
求助须知:如何正确求助?哪些是违规求助? 4539082
关于积分的说明 14165073
捐赠科研通 4456131
什么是DOI,文献DOI怎么找? 2444042
邀请新用户注册赠送积分活动 1435140
关于科研通互助平台的介绍 1412483