Heat transfer characteristics of nanofluid under the action of magnetic field based on molecular dynamics and flow states

纳米流体 传热 磁场 对流换热 传热系数 机械 材料科学 热磁对流 丘吉尔-伯恩斯坦方程 边界层 热力学 物理 努塞尔数 湍流 雷诺数 量子力学
作者
Xilong Zhang,Junhao Li,Yongliang Zhang
出处
期刊:Numerical Heat Transfer Part A-applications [Informa]
卷期号:85 (4): 491-515 被引量:6
标识
DOI:10.1080/10407782.2023.2187904
摘要

Theoretical analysis, numerical simulations, and experimental studies are used to comprehensively investigate the changes in the heat transfer characteristics of Fe3O4–water magnetic nanofluid under different types of magnetic fields and the heat transfer mechanism, providing new ideas for its practical application. By combining the fundamental conservation theorem and the Boussinesq approximation, dimensionless control equations have been established. The analysis of the variation pattern of the calculated values of the source terms under different boundary conditions, as well as the order of magnitude analysis, concludes that: the enhanced trend of Brownian motion and thermophoretic motion is the main reason for the enhanced heat transfer capability of the magnetic nanofluid; where the thermophoretic motion contributes slightly more to the heat transfer; the increase in Joule heat is the reason for the further enhancement of the heat transfer capability by the magnetic field. Volume fraction, temperature, and magnetic field strength are positively correlated with the average convective heat transfer coefficient. The reason for magnetic fields to enhance heat transfer is revealed by the deflection of the magnetic nanofluid by the magnetic body flow under local magnetic fields to form localized reflux. The alternating magnetic field further enhances the ability of magnetic fields to enhance heat transfer in magnetic nanofluids. Overall, the effect of the applied magnetic field on the motion of the magnetic nanoparticles causes the disruption of the thermal boundary layer, which is responsible for the enhanced heat transfer capacity of magnetic nanofluids.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助威武果汁采纳,获得10
1秒前
Onlyyou发布了新的文献求助10
1秒前
圆润润呐完成签到 ,获得积分10
2秒前
充电宝应助铁路网125采纳,获得10
2秒前
3秒前
5秒前
6秒前
小马甲应助Hou采纳,获得10
6秒前
orixero应助Dongyu采纳,获得10
6秒前
dxm完成签到,获得积分10
6秒前
6秒前
ptalala完成签到,获得积分10
7秒前
eason发布了新的文献求助10
7秒前
8秒前
10秒前
10秒前
Singularity应助科研通管家采纳,获得10
10秒前
上官若男应助科研通管家采纳,获得10
10秒前
爱静静应助科研通管家采纳,获得30
10秒前
传奇3应助科研通管家采纳,获得10
10秒前
10秒前
Singularity应助dominate采纳,获得10
10秒前
科目三应助科研通管家采纳,获得10
10秒前
10秒前
852应助科研通管家采纳,获得10
10秒前
搜集达人应助科研通管家采纳,获得30
10秒前
赘婿应助科研通管家采纳,获得10
10秒前
星辰大海应助科研通管家采纳,获得10
11秒前
11秒前
12秒前
小pan完成签到 ,获得积分10
12秒前
13秒前
丁小丁发布了新的文献求助10
13秒前
huang完成签到,获得积分10
13秒前
ptalala发布了新的文献求助10
13秒前
15秒前
16秒前
儒雅闭月发布了新的文献求助10
17秒前
情怀应助manman采纳,获得10
17秒前
上官若男应助大方百招采纳,获得10
17秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310609
求助须知:如何正确求助?哪些是违规求助? 2943401
关于积分的说明 8514871
捐赠科研通 2618733
什么是DOI,文献DOI怎么找? 1431388
科研通“疑难数据库(出版商)”最低求助积分说明 664462
邀请新用户注册赠送积分活动 649626