Forecasting carbon price trends based on an interpretable light gradient boosting machine and Bayesian optimization

梯度升压 碳价格 Boosting(机器学习) 计算机科学 人工智能 机器学习 计量经济学 水准点(测量) 贝叶斯概率 算法 随机森林 数学 气候变化 生态学 大地测量学 生物 地理
作者
Shangkun Deng,Jiankang Su,Yingke Zhu,Yiting Yu,Chongyi Xiao
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:242: 122502-122502 被引量:20
标识
DOI:10.1016/j.eswa.2023.122502
摘要

The future carbon price is crucial to relevant companies, investors, and carbon policymakers, and the significance of carbon price prediction research is self-evident. However, existing study usually predicts actual carbon prices, rarely considering price trends and lacking reasonable interpretations for the prediction model. Thus, in this study, an interpretable machine learning model is proposed to predict carbon price trends. It integrates five methods, including the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), two-stage feature selection (TFS), light gradient boosting machine (LightGBM) optimized by Bayesian optimization algorithm (BOA), and SHapley Additive exPlanations (SHAP). The effectiveness of the proposed model is validated with the carbon prices of the Hubei carbon trading market, which has the largest volume among Chinese markets. The experimental results showed that the proposed model outperforms other benchmark models under five evaluation criteria, including AUC, Accuracy, Precision, Recall, and F1 score, on multiple-step predictions. For one-step-ahead prediction, the average hit ratio results are 0.8342, 77.32 %, 77.87 %, 76.83 %, and 76.88 % respectively; for five-step-ahead prediction, the average hit ratio results are 0.7641, 69.25 %, 71.17 %, 71.97 %, and 71.00 % respectively; and for ten-step-ahead prediction, the average hit ratio results are 0.7519, 69.11 %, 73.80 %, 69.61 %, and 71.16 % respectively. The SHAP model interpretation results indicated that the high-frequency intrinsic mode function (IMF) components of the historical carbon price are the most important features for predicting carbon price trends. This study contributes by forecasting both the upward and downward trends of carbon prices through multi-step-ahead forecasting with the LightGBM model and further interpreting the model's predictions with the SHAP approach. Therefore, the proposed model has excellent forecasting performance with interpretability, which is an effective tool for forecasting carbon price trends.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
书霂完成签到,获得积分10
1秒前
敏感雅香发布了新的文献求助10
2秒前
怕孤单的听寒完成签到,获得积分10
3秒前
壮观梦易发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
乐乐应助77采纳,获得30
6秒前
9秒前
研友_nPbeR8完成签到,获得积分10
9秒前
敏感雅香完成签到,获得积分20
10秒前
卡卡完成签到 ,获得积分10
10秒前
10秒前
单耳兔完成签到 ,获得积分10
11秒前
DH完成签到 ,获得积分10
12秒前
卡卡关注了科研通微信公众号
13秒前
我是老大应助xhz采纳,获得30
14秒前
Bao发布了新的文献求助10
16秒前
素律完成签到,获得积分10
16秒前
火星上含芙完成签到 ,获得积分10
17秒前
情怀应助modesty采纳,获得10
18秒前
lshao完成签到 ,获得积分10
19秒前
19秒前
19秒前
勤奋完成签到,获得积分0
20秒前
22秒前
22秒前
大庆第一发布了新的文献求助10
23秒前
24秒前
chen完成签到 ,获得积分10
24秒前
24秒前
xinlei2023发布了新的文献求助10
27秒前
28秒前
大方兔子发布了新的文献求助10
28秒前
Kang完成签到,获得积分10
28秒前
77发布了新的文献求助30
29秒前
赘婿应助李小二采纳,获得10
29秒前
modesty发布了新的文献求助10
29秒前
Kevin发布了新的文献求助10
30秒前
ding应助大庆第一采纳,获得10
31秒前
给大佬递茶给给大佬递茶的求助进行了留言
32秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959257
求助须知:如何正确求助?哪些是违规求助? 3505580
关于积分的说明 11124544
捐赠科研通 3237326
什么是DOI,文献DOI怎么找? 1789102
邀请新用户注册赠送积分活动 871526
科研通“疑难数据库(出版商)”最低求助积分说明 802844