Forecasting carbon price trends based on an interpretable light gradient boosting machine and Bayesian optimization

梯度升压 碳价格 Boosting(机器学习) 计算机科学 人工智能 机器学习 计量经济学 水准点(测量) 贝叶斯概率 算法 随机森林 数学 气候变化 生态学 大地测量学 生物 地理
作者
Shangkun Deng,Jiankang Su,Yingke Zhu,Yiting Yu,Chongyi Xiao
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:242: 122502-122502 被引量:52
标识
DOI:10.1016/j.eswa.2023.122502
摘要

The future carbon price is crucial to relevant companies, investors, and carbon policymakers, and the significance of carbon price prediction research is self-evident. However, existing study usually predicts actual carbon prices, rarely considering price trends and lacking reasonable interpretations for the prediction model. Thus, in this study, an interpretable machine learning model is proposed to predict carbon price trends. It integrates five methods, including the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), two-stage feature selection (TFS), light gradient boosting machine (LightGBM) optimized by Bayesian optimization algorithm (BOA), and SHapley Additive exPlanations (SHAP). The effectiveness of the proposed model is validated with the carbon prices of the Hubei carbon trading market, which has the largest volume among Chinese markets. The experimental results showed that the proposed model outperforms other benchmark models under five evaluation criteria, including AUC, Accuracy, Precision, Recall, and F1 score, on multiple-step predictions. For one-step-ahead prediction, the average hit ratio results are 0.8342, 77.32 %, 77.87 %, 76.83 %, and 76.88 % respectively; for five-step-ahead prediction, the average hit ratio results are 0.7641, 69.25 %, 71.17 %, 71.97 %, and 71.00 % respectively; and for ten-step-ahead prediction, the average hit ratio results are 0.7519, 69.11 %, 73.80 %, 69.61 %, and 71.16 % respectively. The SHAP model interpretation results indicated that the high-frequency intrinsic mode function (IMF) components of the historical carbon price are the most important features for predicting carbon price trends. This study contributes by forecasting both the upward and downward trends of carbon prices through multi-step-ahead forecasting with the LightGBM model and further interpreting the model's predictions with the SHAP approach. Therefore, the proposed model has excellent forecasting performance with interpretability, which is an effective tool for forecasting carbon price trends.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
wanci应助顺利的奇异果采纳,获得30
2秒前
shenlu完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
丘比特应助不开心我的采纳,获得30
3秒前
研友_VZG7GZ应助Linco采纳,获得10
4秒前
猪猪hero发布了新的文献求助10
4秒前
z104发布了新的文献求助10
5秒前
QZR应助chen采纳,获得60
5秒前
6秒前
重要问丝完成签到 ,获得积分10
6秒前
7秒前
8秒前
小二郎应助正直帆布鞋采纳,获得10
8秒前
bbd完成签到,获得积分10
8秒前
彭于晏应助pax采纳,获得10
9秒前
zhaoaotao完成签到,获得积分10
9秒前
hyPang发布了新的文献求助10
10秒前
fairy完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
魂断红颜发布了新的文献求助10
11秒前
12秒前
12秒前
杨榆藤完成签到,获得积分10
13秒前
14秒前
xuanyu完成签到,获得积分10
15秒前
残剑月发布了新的文献求助10
15秒前
SINET完成签到,获得积分10
16秒前
Lucas应助桃源theshy采纳,获得10
16秒前
yyy完成签到,获得积分10
16秒前
爱的看到完成签到,获得积分10
17秒前
QiongYin_123完成签到 ,获得积分10
17秒前
研友_ZG4ml8发布了新的文献求助10
17秒前
xuanyu发布了新的文献求助10
17秒前
Wakakak完成签到,获得积分10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5613711
求助须知:如何正确求助?哪些是违规求助? 4698799
关于积分的说明 14899078
捐赠科研通 4737011
什么是DOI,文献DOI怎么找? 2547125
邀请新用户注册赠送积分活动 1511067
关于科研通互助平台的介绍 1473605