粗集
球(数学)
等价(形式语言)
计算机科学
数学
人工智能
离散数学
数学分析
作者
Shuyin Xia,Cheng Wang,Guoyin Wang,Xinbo Gao,Weiping Ding,Jianhang Yu,Yujia Zhai,Zizhong Chen
标识
DOI:10.1109/tnnls.2023.3325199
摘要
Pawlak rough set (PRS) and neighborhood rough set (NRS) are the two most common rough set theoretical models. Although the PRS can use equivalence classes to represent knowledge, it is unable to process continuous data. On the other hand, NRSs, which can process continuous data, rather lose the ability of using equivalence classes to represent knowledge. To remedy this deficit, this article presents a granular-ball rough set (GBRS) based on the granular-ball computing combining the robustness and the adaptability of the granular-ball computing. The GBRS can simultaneously represent both the PRS and the NRS, enabling it not only to be able to deal with continuous data and to use equivalence classes for knowledge representation as well. In addition, we propose an implementation algorithm of the GBRS by introducing the positive region of GBRS into the PRS framework. The experimental results on benchmark datasets demonstrate that the learning accuracy of the GBRS has been significantly improved compared with the PRS and the traditional NRS. The GBRS also outperforms nine popular or the state-of-the-art feature selection methods. We have open-sourced all the source codes of this article at http://www.cquptshuyinxia.com/GBRS.html, https://github.com/syxiaa/GBRS.
科研通智能强力驱动
Strongly Powered by AbleSci AI